Spark 机器学习------逻辑回归
Posted soyosuyang
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Spark 机器学习------逻辑回归相关的知识,希望对你有一定的参考价值。
package Spark_MLlib import javassist.bytecode.SignatureAttribute.ArrayType import org.apache.spark.sql.SparkSession import org.apache.spark.ml.{Pipeline, PipelineModel} import org.apache.spark.ml.classification.LogisticRegression import org.apache.spark.ml.feature.{HashingTF, Tokenizer} import org.apache.spark.ml.linalg.Vector import org.apache.spark.sql.Row /** * Spark逻辑回归的库 * http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.ml.classification.LogisticRegression */ object 逻辑回归 { val spark=SparkSession.builder().master("local[2]").appName("逻辑回归").getOrCreate() import spark.implicits._ def main(args: Array[String]): Unit = { val training = spark.createDataFrame(Seq((0,"soyo spark soyo1",1.0),(1,"hadoop spark",1.0),(2,"zhouhang xiaohai",0.0),(3,"hbase spark hive soyo",1.0))). toDF("id","text","label") //转换器 val tokenizer=new Tokenizer().setInputCol("text").setOutputCol("words") val hashingTF=new HashingTF().setNumFeatures(1000).setInputCol(tokenizer.getOutputCol).setOutputCol("features") //评估器 val lr= new LogisticRegression().setMaxIter(10). //设置最大迭代次数 setRegParam(0.01) // 设置正则化参数 val pipeline= new Pipeline().setStages(Array(tokenizer,hashingTF,lr)) //训练出的模型 val model=pipeline.fit(training) //测试数据 val test= spark.createDataFrame(Seq((4,"spark i like"),(5,"hadoop spark book"),(6,"soyo9 soy 88"))).toDF("id","text") test.show() // test.createOrReplaceTempView("soyo") // spark.sql("").show() model.transform(test).schema.foreach(println) model.transform(test) .select("id","text","probability","prediction") .collect() .foreach { case Row(id: Int, text: String, prob: Vector, prediction: Double) => println(s"($id,$text)----->prob=$prob,prediction=$prediction") } //转换器生成的一些中间数据 model.transform(test).select("id","text","features","rawPrediction") .collect() .foreach{ case Row(id:Int,text:String,features:Vector,rawPrediction:Vector)=> println(s"id=$id,text=$text,features=$features,rawPrediction=$rawPrediction") } spark.stop() } }
结果:
+---+-----------------+
| id| text|
+---+-----------------+
| 4| spark i like|
| 5|hadoop spark book|
| 6| soyo9 soy 88|
+---+-----------------+
StructField(id,IntegerType,false)
StructField(text,StringType,true)
StructField(words,ArrayType(StringType,true),true)
StructField(features,[email protected],true)
StructField(rawPrediction,[email protected],true)
StructField(probability,[email protected],true)
StructField(prediction,DoubleType,true)
(4,spark i like)----->prob=[0.033501882964501836,0.9664981170354981],prediction=1.0 准确率
(5,hadoop spark book)----->prob=[0.011175823696937707,0.9888241763030623],prediction=1.0 准确率
(6,soyo9 soy 88)----->prob=[0.26222944363302514,0.7377705563669748],prediction=1.0 准确率(误判了)但值较低
id=4,text=spark i like,features=(1000,[105,329,330],[1.0,1.0,1.0]),rawPrediction=[-3.3620777052692805,3.3620777052692805]
id=5,text=hadoop spark book,features=(1000,[105,181,393],[1.0,1.0,1.0]),rawPrediction=[-4.482763689867715,4.482763689867715]
id=6,text=soyo9 soy 88,features=(1000,[543,602,976],[1.0,1.0,1.0]),rawPrediction=[-1.0344130174468225,1.0344130174468225]
以上是关于Spark 机器学习------逻辑回归的主要内容,如果未能解决你的问题,请参考以下文章