强化学习(David Silver)1:简介
Posted _1024
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了强化学习(David Silver)1:简介相关的知识,希望对你有一定的参考价值。
1、书
《An introduction to Reforcement Learning》Sutton and Barto, 1998,400页
《Algorithms for Reforcement Learning》Szepesvari,2010,偏数学,不到100页
2、强化学习的特点
不存在监督者,有奖励信号;
反馈是延迟的,不是每步都有奖励;
时序很重要(数据不是独立同分布的)
动作决定接下来的环境
3、强化学习的例子
飞机、游戏、股市、发电厂控制、人形机器人行走
4、强化学习基于奖励假设
强化学习的目标是最大化期望累积收益
5、代理和环境
代理:执行动作,接受观察,接收奖励
环境:接收动作,释放观察,释放奖励
6、历史和状态
未来将要发生什么依赖于历史
状态决定未来会发生什么
状态是历史信息的函数
历史内容太多,不易记录,状态可以看做历史信息的简化
6.1、状态环境
环境状态是环境的私有表达;代理接收到观察和奖励,但是往往并不知道环境的状态;即使环境状态可见,往往也包含不相关信息
ps:环境状态在算法中不可用
6.2、动作状态
历史信息的函数;强化学习真正使用到的状态
6.3、信息状态(马尔科夫态)
当前状态仅与上一个状态有关;与其它历史状态无关
6.4、完全观察环境
假设观察=动作状态=信息状态,此时强化学习是一个MDP
6.5、部分观察环境
代理不能直接观察到环境;这是一个POMDP(partially observable MDP)
7、代理的构成
7.1、策略
如何执行东西,是状态到动作的映射,可以是确定性策略,也可以是非确定性策略
7.2、值函数
值定义:对未来奖励的预测
值函数:对状态和/或动作的评估;
类型:状态值函数;动作值函数;无论哪一种形式,都是基于某种策略来说的
用途:动作/状态选择;通过对动作/状态估值,进行策略选择
7.3、模型
模型:预测环境接下来会做什么
类型:转移模型(代理在某个状态下,执行某个动作后,转移向另一个状态的概率)
奖励模型(代理在某个状态下执行某个动作后,环境给予的奖励)
7.4、代理的分类
ValueBased:无策略;有值函数
PolicyBased:有策略;无值函数
ActorCritic:有策略;有值函数
ModelFree:没有model
以上是关于强化学习(David Silver)1:简介的主要内容,如果未能解决你的问题,请参考以下文章
David Silver强化学习Lecture2:马尔可夫决策过程