Strom简单介绍

Posted duan2

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Strom简单介绍相关的知识,希望对你有一定的参考价值。

1、离线计算是什么?

离线计算:批量获取数据、批量传输数据、周期性批量计算数据、数据展示

代表技术:Sqoop批量导入数据、HDFS批量存储数据、MapReduce批量计算数据、Hive批量计算数据、***任务调度

1hivesql

2、调度平台

3Hadoop集群运维

4、数据清洗(脚本语言)

5、元数据管理

6、数据稽查

7、数据仓库模型架构

 

2.流式计算是什么

 

流式计算:数据实时产生、数据实时传输、数据实时计算、实时展示

 

代表技术:Flume实时获取数据、Kafka/metaq实时数据存储、Storm/JStorm实时数据计算、Redis实时结果缓存、持久化存储(mysql)

 

一句话总结:将源源不断产生的数据实时收集并实时计算,尽可能快的得到计算结果

离线计算与实时计算的区别

最大的区别:实时收集、实时计算、实时展示

 

4Storm是什么?

Flume实时采集,低延迟

Kafka消息队列,低延迟

Storm实时计算,低延迟

Redis实时存储,低延迟

 

Storm实时处理数据,特点:低延迟、高可用、分布式、可扩展、数据不丢失。提供简单容易理解的接口,便于开发。

海量数据?数据类型很多,产生数据的终端很多,处理数据能力增强

5StormHadoop的区别

l Storm用于实时计算,Hadoop用于离线计算。

l Storm处理的数据保存在内存中,源源不断;Hadoop处理的数据保存在文件系统中,一批一批。

l Storm的数据通过网络传输进来;Hadoop的数据保存在磁盘中。

l StormHadoop的编程模型相似

 

 

Job:任务名称

JobTracker:项目经理

TaskTracker:开发组长、产品经理

Child:负责开发的人员

Mapper/Reduce:开发人员中的两种角色,一种是服务器开发、一种是客户端开发

 

Topology:任务名称

Nimbus:项目经理

Supervisor:开组长、产品经理

Worker:开人员

Spout/Bolt:开人员中的两种角色,一种是服务器开发、一种是客户端开发

 

6Storm应用场景及行业案例

 

Storm用来实时计算源源不断产生的数据,如同流水线生产。

运用场景

日志分析

海量日志中分析出特定的数据,并将分析的结果存入外部存储器用来辅佐决策。

管道系统

将一个数据从一个系统传输到另外一个系统,比如将数据库同步到Hadoop

消息转化器

将接受到的消息按照某种格式进行转化,存储到另外一个系统如消息中间件

6.2、典型案列

一淘-实时分析系统:实时分析用户的属性,并反馈给搜索引擎

最初,用户属性分析是通过每天在云梯上定时运行的MR job来完成的。为了满足实时性的要求,希望能够实时分析用户的行为日志,将最新的用户属性反馈给搜索引擎,能够为用户展现最贴近其当前需求的结果。

携程-网站性能监控:实时分析系统监控携程网的网站性能

利用html5提供的performance标准获得可用的指标,并记录日志。Storm集群实时分析日志和入库。使用DRPC聚合成报表,通过历史数据对比等判断规则,触发预警事件。

阿里妈妈-用户画像:实时计算用户的兴趣数据

为了更加精准投放广告,阿里妈妈后台计算引擎需要维护每个用户的兴趣点(理想状态是,你对什么感兴趣,就向你投放哪类广告)。用户兴趣主要基于用户的历史行为、用户的实时查询、用户的实时点击、用户的地理信息而得,其中实时查询、实时点击等用户行为都是实时数据。考虑到系统的实时性,阿里妈妈使用Storm维护用户兴趣数据,并在此基础上进行受众定向的广告投放。

 

7Storm核心组件(重要)

 

 

 

l Nimbus:负责资源分配和任务调度。

l Supervisor:负责接受nimbus分配的任务,启动和停止属于自己管理的worker进程。---通过配置文件设置当前supervisor上启动多少个worker

l Worker:运行具体处理组件逻辑的进程。Worker运行的任务类型只有两种,一种是Spout任务,一种是Bolt任务。

l Taskworker中每一个spout/bolt的线程称为一个task. storm0.8之后,task不再与物理线程对应,不同spout/bolttask可能会共享一个物理线程,该线程称为executor

 

8Storm编程模型(重要)

 

 

l TopologyStorm中运行的一个实时应用程序的名称。(拓扑)

l Spout:在一个topology中获取源数据流的组件。

通常情况下spout会从外部数据源中读取数据,然后转换为topology内部的源数据。

l Bolt:接受数据然后执行处理的组件,用户可以在其中执行自己想要的操作。

l Tuple:一次消息传递的基本单元,理解为一组消息就是一个Tuple

l Stream:表示数据的流向。

9、流式计算一般架构图(重要)

 

 

 

其中flume用来获取数据。

 

l Kafka用来临时保存数据。

 

l Strom用来计算数据。

 

l Redis是个内存数据库,用来保存数据。

 

以上是关于Strom简单介绍的主要内容,如果未能解决你的问题,请参考以下文章

Apache Strom和Kafka的简单笔记 (零) - 开端

首发Strom/JStorm:流式计算框架的应用

基于Kafka+Strom构建流式计算卖家日志系统(有赠书)

storm的基本概念安装测试

jstorm之于storm

自我介绍