OpenJ_Bailian3375

Posted Kaiser

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了OpenJ_Bailian3375相关的知识,希望对你有一定的参考价值。

Farmer John has decided to reward his cows for their hard work by taking them on a tour of the big city! The cows must decide how best to spend their free time.

Fortunately, they have a detailed city map showing the L (2 ≤ L ≤ 1000) major landmarks (conveniently numbered 1.. L) and the P (2 ≤ P ≤ 5000) unidirectional cow paths that join them. Farmer John will drive the cows to a starting landmark of their choice, from which they will walk along the cow paths to a series of other landmarks, ending back at their starting landmark where Farmer John will pick them up and take them back to the farm. Because space in the city is at a premium, the cow paths are very narrow and so travel along each cow path is only allowed in one fixed direction.

While the cows may spend as much time as they like in the city, they do tend to get bored easily. Visiting each new landmark is fun, but walking between them takes time. The cows know the exact fun values Fi (1 ≤ Fi ≤ 1000) for each landmark i.

The cows also know about the cowpaths. Cowpath i connects landmark L1i to L2i (in the direction L1i -> L2i ) and requires time Ti (1 ≤ Ti ≤ 1000) to traverse.

In order to have the best possible day off, the cows want to maximize the average fun value per unit time of their trip. Of course, the landmarks are only fun the first time they are visited; the cows may pass through the landmark more than once, but they do not perceive its fun value again. Furthermore, Farmer John is making the cows visit at least two landmarks, so that they get some exercise during their day off.

Help the cows find the maximum fun value per unit time that they can achieve.

Input

* Line 1: Two space-separated integers: L and P
* Lines 2..L+1: Line i+1 contains a single one integer: Fi
* Lines L+2..L+P+1: Line L+i+1 describes cow path i with three space-separated integers: L1i , L2i , and Ti

Output

* Line 1: A single number given to two decimal places (do not perform explicit rounding), the maximum possible average fun per unit time, or 0 if the cows cannot plan any trip at all in accordance with the above rules.

Sample Input

5 7
30
10
10
5
10
1 2 3
2 3 2
3 4 5
3 5 2
4 5 5
5 1 3
5 2 2

Sample Output

6.00

【题目大意】

给出一个有向图,问求一个回路,使得回路上的点权之和/边权之和 最大。

【解题思路】

此题是对01分数规划的应用,那么首先明白01分数规划的思想,用基础分数规划,就是第三类,最优比率环裸题

spfa判正环。

 1 #include<cstdio>
 2 #include<cstring>
 3 #include<iostream>
 4 #include<algorithm>
 5 #include<cmath>
 6 #include<queue>
 7 #define N 1007
 8 #define M 5007
 9 using namespace std;
10 
11 int n,m;
12 int num[N];double w[N],dis[N];bool vis[N];
13 int cnt,head[N],Next[M],rea[M];double val[M];
14 
15 void Add(int u,int v,double fee)
16 {Next[++cnt]=head[u],head[u]=cnt,rea[cnt]=v,val[cnt]=fee;}
17 bool spfa(double rate)
18 {
19     for (int i=0;i<=n;i++)
20         dis[i]=0,vis[i]=1,num[i]=1;    
21     queue<int>q;
22     for (int i=1;i<=n;i++)
23         q.push(i);
24     while(!q.empty())
25     {
26         int u=q.front();q.pop();
27         for (int i=head[u];i!=-1;i=Next[i])
28         {
29             int v=rea[i];double fee=w[u]-rate*val[i];
30             if (dis[u]+fee>dis[v])
31             {
32                 dis[v]=dis[u]+fee;
33                 if (!vis[v])
34                 {
35                     q.push(v);
36                     num[v]++;vis[v]=1;
37                     if (num[v]>n) return true;
38                 }
39             }
40         }
41         vis[u]=0;
42     }
43     return false;    
44 }
45 int main()
46 {
47     memset(head,-1,sizeof(head));
48     scanf("%d%d",&n,&m);
49     for (int i=1;i<=n;i++)
50         scanf("%lf",&w[i]);
51     int x,y;double z;
52     for (int i=1;i<=m;i++)
53     {
54         scanf("%d%d%lf",&x,&y,&z);
55         Add(x,y,z);
56     }
57     double l=0.0,r=1000.0;
58     while (r-l>0.0001)
59     {
60         double mid=(l+r)/2;
61         if (spfa(mid)) l=mid;
62         else r=mid;
63     }
64     printf("%.2f\n",l);
65 }

POJ过不了

以上是关于OpenJ_Bailian3375的主要内容,如果未能解决你的问题,请参考以下文章

The Castle OpenJ_Bailian - 1164

OpenJ_Bailian 4103 踩方格(搜索 动态规划 )

Cleaning Shifts / OpenJ_Bailian - 2376

四则运算表达式求值 OpenJ_Bailian - 4132

OpenJ_Bailian 7617 输出前k大的数

八皇后问题 OpenJ_Bailian - 2698 DFS