用R语言对一个信用卡数据实现logit,GBM,knn,xgboost
Posted payton数据之旅
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了用R语言对一个信用卡数据实现logit,GBM,knn,xgboost相关的知识,希望对你有一定的参考价值。
Prepare the data
数据来自UCIhttp://archive.ics.uci.edu/ml/machine-learning-databases/credit-screening,一个信a用卡的数据,具体各项变量名以及变量名代表的含义不明(应该是出于保护隐私的目的),本文会用logit,GBM,knn,xgboost来对数据进行分类预测,对比准确率
预计的准确率应该是:
xgboost > GBM > logit > knn
Download the data
dataset = read.table("http://archive.ics.uci.edu/ml/machine-learning-databases/credit-screening/crx.data", sep = ",", essay-header = F, na.strings = "?")
head(dataset)
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16
1 b 30.83 0.000 u g w v 1.25 t t 1 f g 202 0 +
2 a 58.67 4.460 u g q h 3.04 t t 6 f g 43 560 +
3 a 24.50 0.500 u g q h 1.50 t f 0 f g 280 824 +
4 b 27.83 1.540 u g w v 3.75 t t 5 t g 100 3 +
5 b 20.17 5.625 u g w v 1.71 t f 0 f s 120 0 +
6 b 32.08 4.000 u g m v 2.50 t f 0 t g 360 0 +
## save.csv(dataset,file = "creditCard.csv")
以上是数据的形式,接下来看下数据是否有缺失值和各个数据的类型
sapply(dataset,function(x) sum(is.na(x)))
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16
12 12 0 6 6 9 9 0 0 0 0 0 0 13 0 0
sapply(dataset,class)
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
"factor" "numeric" "numeric" "factor" "factor" "factor" "factor" "numeric" "factor" "factor"
V11 V12 V13 V14 V15 V16
"integer" "factor" "factor" "integer" "integer" "factor"
Train and Test
分割数据的训练集和测试集,这里set.seed(123),设定70%的训练集,30%的测试集.
set.seed(123)dataset = na.omit(dataset)n = dim(dataset)[1]index = sample(n,round(0.7*n))train = dataset[index,]test = dataset[-index,]dim(train)
[1] 457 16
dim(test)
[1] 196 16
Change the variable into dummy variables
有时候,需要转化变量为哑变量,因为在一些挖掘场合,数据不能直接使用因子型的数据:
-
knn
-
glmnet
-
svm
-
xgboost
有些挖掘方法是可以使用因子变量的,比如:
-
logistic regression
-
raprt
-
GBM
-
randomforest
dataset2 = datasetlibrary(plyr)into_factor = function(x){
if(class(x) == "factor"){
n = length(x)
data.fac = data.frame(x = x,y = 1:n)
output = model.matrix(y~x,data.fac)[,-1]
## Convert factor into dummy variable matrix
}else{
output = x
## if x is numeric, output is x
}
output
}into_factor(dataset$V4)[1:5,]
xu xy
1 1 0
2 1 0
3 1 0
4 1 0
5 1 0
dataset2 = colwise(into_factor)(dataset2)dataset2 = do.call(cbind,dataset2)dataset2 = as.data.frame(dataset2)head(dataset2)
V1 V2 V3 xu xy xgg xp xc xcc xd xe xff xi xj xk xm xq xr xw xx xdd xff xh xj xn xo xv xz
1 1 30.83 0.000 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
2 0 58.67 4.460 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
3 0 24.50 0.500 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
4 1 27.83 1.540 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
5 1 20.17 5.625 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
6 1 32.08 4.000 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0
V8 V9 V10 V11 V12 xp xs V14 V15 V16
1 1.25 1 1 1 0 0 0 202 0 1
2 3.04 1 1 6 0 0 0 43 560 1
3 1.50 1 0 0 0 0 0 280 824 1
4 3.75 1 1 5 1 0 0 100 3 1
5 1.71 1 0 0 0 0 1 120 0 1
6 2.50 1 0 0 1 0 0 360 0 1
dim(dataset2)
[1] 653 38
Logistic Regression
使用logistic回归来进行测试建模和预测,使用的函数是glm
logit.model = glm(V16~.,data = train,family = "binomial")logit.response = predict(logit.model,test,type = "response")logit.predict = ifelse(logit.response>0.5,"+","-")table(logit.predict,test$V16)
logit.predict - +
- 90 24
+ 13 69
accurancy1 = mean(logit.predict == test$V16)accurancy1
[1] 0.81122
GBM
使用GBM方法来进行预测,这里用的是caret
,repeat-cv来选择最优树
library(caret)
ctrl = trainControl(method = "repeatedcv", number = 5, repeats = 5)set.seed(300)m_gbm = train(V16 ~ ., data=train, method = "gbm", metric = "Kappa", trControl = ctrl)
gbm.predict = predict(m_gbm,test)table(gbm.predict,test$V16)
accurancy2 = mean(gbm.predict == test$V16)accurancy2
[1] 0.85714
knn method for classification
knn set k = 5
This is a model without cross-validation
首先测试一个knn模型,不做CV,不做标准化,不做数据类型转换得到的结果,这里,不转换数据类型会把因子类型的变量舍弃,仅保留数值变量
library(caret)knn.model1 = knn3(V16 ~ .,data = train, k = 5)
knn.response1 = predict(knn.model1,test,class = "response")
knn.predict1 = ifelse(knn.response1[,1]<0.5,"+","-")
table(knn.predict1,test$V16)
knn.predict1 - +
- 78 48
+ 25 45
mean(knn.predict1 == test$V16)
[1] 0.62755
knn after scale
After scaling and convert into dummy variables:
经过标准化和数据转换之后的准确率:
knn.dataset = cbind(
colwise(scale)(dataset2[,-38]),V16 = as.factor(dataset2$V16)
)
set.seed(123)
index = sample(n,round(0.7*n))
train.knn = knn.dataset[index,]
test.knn = knn.dataset[-index,]
knn.model1 = knn3(V16 ~ .,data = train.knn, k = 5)
knn.predict1 = predict(knn.model1,test.knn,,type = "class") table(knn.predict1,test.knn$V16)
knn.predict1 0 1
0 89 32
1 14 61
mean(knn.predict1 == test.knn$V16)
[1] 0.76531
knn CV for k
my-try
不管是我的这个程序函数caret,总算出来应该是k=2的时候误差最小,但是实际情况不是这样
library(class)cv.knn = function(data,n=5,k){
index = sample(1:5,nrow(data),replace = T)
acc=0
for ( i in 1:5){
ind = index == i
train = data[-ind,]
test = data[ind,]
knn.model1 = knn3(V16 ~ .,data = train, k = k)
knn.predict= predict(knn.model1,test,type = "class")
acc[i] = mean(knn.predict == test$V16)
}
mean(acc)}cv.knn(train.knn,3,5)
[1] 0.8533
k = 2:20set.seed(123)acc = sapply(k,function(x) cv.knn(train.knn,3,x))plot(k,acc,type = "b")
k.final = which.max(acc)knn.model.f = knn3(V16 ~ .,data = train.knn, k = k.final) knn.predict.f = predict(knn.model.f,test.knn,type = "class")
table(knn.predict.f,test.knn$V16)
knn.predict.f 0 1
0 81 31
1 22 62
mean(knn.predict.f == test.knn$V16)
[1] 0.72959
library(caret)
fitControl <- trainControl(method = "cv", number = 10)
knnTune <- train(x = dataset2[1:37], y = dataset2[,38], method = "knn", preProc = c("center", "scale"),tuneGrid = data.frame(.k = 1:20), trControl = fitControl)
直接train,test来看:
效果是k=5最好
knn_train_test = function(train,test,k =5){
knn.model.f = knn3(V16 ~ .,data = train, k = k)
knn.predict.f = predict(knn.model.f,test,type = "class")
mean(knn.predict.f == test$V16)}x = 1:20result =
sapply(x, function(x) knn_train_test(train.knn,test.knn,k = x)) plot(x,result,type = "b")
k.final = which.max(result)accurancy3 = knn_train_test(train.knn,test.knn,k = k.final)accurancy3
[1] 0.75
xgboost
Install:
## devtools::install_github(‘dmlc/xgboost‘,subdir=‘R-package‘)
require(xgboost)
require(methods)
require(plyr)
set.seed(123)
set.seed(123)
index = sample(n,round(0.7*n))
train.xg = dataset2[index,]
test.xg = dataset2[-index,]
label <- as.matrix(train.xg[,38,drop =F])
data <- as.matrix(train.xg[,-38,drop =F])
data2 <- as.matrix(test.xg[,-38,drop =F])
label2 = as.matrix(test.xg[,38,drop =F])
# weight <- as.numeric(dtrain[[32]]) * testsize / length(label)
xgmat <- xgb.DMatrix(data, label = label, missing = -10000)
param <- list("objective" = "binary:logistic","bst:eta" = 1,"bst:max_depth" = 2,"eval_metric" = "logloss","silent" = 1,"nthread" = 16 ,"min_child_weight" =1.45)
nround =275
bst = xgb.train(param, xgmat, nround )
res1 = predict(bst,data2)
pre1 = ifelse(res1>0.5,1,0)
table(pre1,label2)
label2
pre1 0 1
0 91 15
1 12 78
accurancy4 = mean(pre1 ==label2)
accurancy4
[1] 0.86224
Final Results
Method | Accurancy |
---|---|
logistic regression | 0.81122 |
GBM | 0.85714 |
knn | 0.75 |
xgboost | 0.86224 |
以上是关于用R语言对一个信用卡数据实现logit,GBM,knn,xgboost的主要内容,如果未能解决你的问题,请参考以下文章
R语言使用gbm包的gbm函数构建梯度提升机模型(Gradient Boosting Machine)指定分布为贝努力分布bernoulli
R语言使用caret包对GBM模型自定义参数调优:自定义参数优化网格
R语言基于h2o包构建二分类模型:使用h2o.gbm构建梯度提升机模型GBM使用h2o.auc计算模型的AUC值
R语言使用caret包对GBM模型进行参数调优实战:Model Training and Parameter Tuning
R语言使用caret包对GBM模型参数调优SVM模型自定义参数调优RDF模型自定义参数调优(例如,ROC)重采样对多个模型的性能差异进行统计描述可视化多模型在多指标下的性能对比分析