常见统计估计概念和区别

Posted VincentCheng

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了常见统计估计概念和区别相关的知识,希望对你有一定的参考价值。

一、 常见检验

1. 独立性检验针对于类别型变量,基于频数表或者列联表来判断两个因素之间的独立性。原假设是两个因素相互独立,P(AB) = P(A)*P(B)。如果得到的P值比较大,说明原假设不独立,可以进而计算Phi系数,列联系数和Cramer‘s  V系数等来判断相关性

2. 相关性的显著性检验是针对定量变量,对定量变量计算出相关系数之后,来计算对于原来的假设,变量间不相关(即总体的相关系数为0),来进行检验的工具,R中自带的工具为cor.test()

3. T检验是一种针对正态分布的参数方法,和1,2两种检验解决解决的问题不同,它是针对均值的检验

举例:

当有四组数据性别,地区,年龄,血糖

1. 当想要研究相别,地区与年龄关系,由于性别和地区是类别型变量可以使用独立性检验

2. 当要研究某一地区内男性的年龄和血糖的关系,由于年龄和血糖变量是定量变量,可以计算相关性然后用相关性检验

3. 当要研究某一年龄段,不同地区男性之间的血糖是否处于同一水平可以采用T检验

二、P值的意义

基本原理:

1、一个命题只能证伪,不能证明为真

2、在一次观测中,小概率事件不可能发生

3、在一次观测中,如果小概率事件发生了,那就是假设命题为假

证明逻辑就是:我要证明命题为真->证明该命题的否命题为假->在否命题的假设下,观察到小概率事件发生了->否命题被推翻->原命题为真->搞定。

结合这个例子来看:证明A是合格的投手-》证明“A不是合格投手”的命题为假-》观察到一个事件(比如A连续10次投中10环),而这个事件在“A不是合格投手”的假设下,概率为p,小于0.05->小概率事件发生,否命题被推翻。

可以看到p越小-》这个事件越是小概率事件-》否命题越可能被推翻-》原命题越可信

作者:吉米多维奇
链接:https://www.zhihu.com/question/23149768/answer/31704861
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

 

以上是关于常见统计估计概念和区别的主要内容,如果未能解决你的问题,请参考以下文章

一些常用的机器学习算法实现

参数统计与非参数统计的联系与区别?

学机器学习要学一些什么?机器学习和深度学习项目实战分享

数理统计基础 06 - 相关分析和方差分析

概率统计17——点估计和连续性修正

[概率论与数理统计]笔记:5.1 点估计概述