POJ 3686 The Windy's (最小费用流或最佳完全匹配)
Posted dwtfukgv
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了POJ 3686 The Windy's (最小费用流或最佳完全匹配)相关的知识,希望对你有一定的参考价值。
题意:有n个订单m个车间,每个车间均可以单独完成任何一个订单。每个车间完成不同订单的时间是不同的。不会出现两个车间完成同一个订单的情况。给出每个订单在某个车间完成所用的时间。问订单完成的平均时间是多少。
析:这个题可以用最小费用流或者最佳完全匹配来做,因为只有车间和订单,满足二分图,主要是在建图。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #include <assert.h> #include <bitset> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define fi first #define se second #define pb push_back #define sqr(x) ((x)*(x)) #define ms(a,b) memset(a, b, sizeof a) #define sz size() #define pu push_up #define pd push_down #define cl clear() //#define all 1,n,1 #define FOR(i,x,n) for(int i = (x); i < (n); ++i) #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 1e20; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 50 * 50 + 100 + 10; const int maxm = 1e5 + 10; const int mod = 50007; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, -1, 0, 1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c) { return r >= 0 && r < n && c >= 0 && c < m; } struct Edge{ int from, to, cap, flow, cost; }; struct MinCostMaxFlow{ int n, m, s, t; vector<Edge> edges; vector<int> G[maxn]; bool inq[maxn]; int d[maxn]; int p[maxn]; int a[maxn]; void init(int n){ this-> n = n; for(int i = 0; i < n; ++i) G[i].cl; edges.cl; } void addEdge(int from, int to, int cap, int cost){ edges.pb((Edge){from, to, cap, 0, cost}); edges.pb((Edge){to, from, 0, 0, -cost}); m = edges.sz; G[from].pb(m - 2); G[to].pb(m - 1); } bool bellman(int &flow, int &cost){ ms(d, INF); ms(inq, 0); inq[s] = 1; d[s] = 0; a[s] = INF; p[s] = 0; queue<int> q; q.push(s); while(!q.empty()){ int u = q.front(); q.pop(); inq[u] = 0; for(int i = 0; i < G[u].sz; ++i){ Edge &e = edges[G[u][i]]; if(e.cap > e.flow && d[e.to] > d[u] + e.cost){ d[e.to] = d[u] + e.cost; p[e.to] = G[u][i]; a[e.to] = min(a[u], e.cap - e.flow); if(!inq[e.to]){ q.push(e.to); inq[e.to] = 1; } } } } if(d[t] == INF) return false; cost += a[t] * d[t]; flow += a[t]; int u = t; while(u != s){ edges[p[u]].flow += a[t]; edges[p[u]^1].flow -= a[t]; u = edges[p[u]].from; } return true; } int mincostmaxflow(int s, int t){ this->s = s; this->t = t; int flow = 0, cost = 0; while(bellman(flow, cost)); return cost; } }; MinCostMaxFlow mcmf; int a[55][55]; int main(){ int T; cin >> T; while(T--){ scanf("%d %d", &n, &m); int s = 0, t = n * m + n + 2; mcmf.init(t + 10); for(int i = 1; i <= n; ++i) for(int j = 1; j <= m; ++j) scanf("%d", a[i] + j); for(int i = 1; i <= n; ++i){ mcmf.addEdge(s, i, 1, 0); for(int j = 1; j <= m; ++j) for(int k = 1; k <= n; ++k){ mcmf.addEdge(i, j * n + k, 1, k * a[i][j]); if(i == 1) mcmf.addEdge(j * n + k, t, 1, 0); } } printf("%f\n", mcmf.mincostmaxflow(s, t) * 1. / n); } return 0; }
以上是关于POJ 3686 The Windy's (最小费用流或最佳完全匹配)的主要内容,如果未能解决你的问题,请参考以下文章
POJ 3686 The Windy's | 最小费用最大流
POJ 3686 The Windy's (最小费用流或最佳完全匹配)