P2953 [USACO09OPEN]牛的数字游戏Cow Digit Game

Posted 心之所向 素履以往

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了P2953 [USACO09OPEN]牛的数字游戏Cow Digit Game相关的知识,希望对你有一定的参考价值。

                P2953 [USACO09OPEN]牛的数字游戏Cow Digit Game

题目描述

Bessie is playing a number game against Farmer John, and she wants you to help her achieve victory.

Game i starts with an integer N_i (1 <= N_i <= 1,000,000). Bessie goes first, and then the two players alternate turns. On each turn, a player can subtract either the largest digit or the smallest non-zero digit from the current number to obtain a new number. For example, from 3014 we may subtract either 1 or 4 to obtain either 3013 or 3010, respectively. The game continues until the number becomes 0, at which point the last player to have taken a turn is the winner.

Bessie and FJ play G (1 <= G <= 100) games. Determine, for each game, whether Bessie or FJ will win, assuming that both play perfectly (that is, on each turn, if the current player has a move that will guarantee his or her win, he or she will take it).

Consider a sample game where N_i = 13. Bessie goes first and takes 3, leaving 10. FJ is forced to take 1, leaving 9. Bessie takes the remainder and wins the game.

贝茜和约翰在玩一个数字游戏.贝茜需要你帮助她.

游戏一共进行了G(1≤G≤100)场.第i场游戏开始于一个正整数Ni(l≤Ni≤1,000,000).游

戏规则是这样的:双方轮流操作,将当前的数字减去一个数,这个数可以是当前数字的最大数码,也可以是最小的非0数码.比如当前的数是3014,操作者可以减去1变成3013,也可以减去4变成3010.若干次操作之后,这个数字会变成0.这时候不能再操作的一方为输家. 贝茜总是先开始操作.如果贝茜和约翰都足够聪明,执行最好的策略.请你计算最后的赢家.

比如,一场游戏开始于13.贝茜将13减去3变成10.约翰只能将10减去1变成9.贝茜再将9减去9变成0.最后贝茜赢.

输入输出格式

输入格式:

 

  • Line 1: A single integer: G

  • Lines 2..G+1: Line i+1 contains the single integer: N_i

 

输出格式:

 

  • Lines 1..G: Line i contains ‘YES‘ if Bessie can win game i, and ‘NO‘ otherwise.

 

输入输出样例

输入样例#1:
2 
9 
10 
输出样例#1:
YES 
NO 

说明

For the first game, Bessie simply takes the number 9 and wins. For the second game, Bessie must take 1 (since she cannot take 0), and then FJ can win by taking 9.

 

博弈论 用到了sg函数和sg定理 然而我一开始并没有看出来 

乱搞拿了40 ,这数据是要多水啊

组合博弈:三大游戏

博弈论:sg函数

 

技术分享
 1 #include <cstdio>
 2 #include <cctype>
 3 
 4 const int MAXN=1000010;
 5 
 6 int n,t;
 7 
 8 int sg[MAXN];
 9 
10 inline void read(int&x) {
11     int f=1;register char c=getchar();
12     for(x=0;!isdigit(c);c==-&&(f=-1),c=getchar());
13     for(;isdigit(c);x=x*10+c-48,c=getchar());
14     x=x*f;
15 }
16 
17 int hh() {
18     read(n);
19     for(int mn,mx,t,i=1;i<MAXN-1;++i) {
20         mn=9;mx=0;t=i;
21         while(t) {
22             int b=t%10;
23             if(b) {mx=mx<b?b:mx;mn=mn>b?b:mn;}
24             t/=10;
25         }
26         sg[i]=(sg[i-mx]&sg[i-mn])^1;
27     }
28     for(int t,i=1;i<=n;++i) {
29         read(t);
30         sg[t]?printf("YES\n"):printf("NO\n");
31     }
32     return 0;
33 }
34 
35 int sb=hh();
36 int main(int argc,char**argv) {;} 
代码

 

以上是关于P2953 [USACO09OPEN]牛的数字游戏Cow Digit Game的主要内容,如果未能解决你的问题,请参考以下文章

洛谷 [P2953] 牛的数字游戏

洛谷 P2909 [USACO08OPEN]牛的车Cow Cars

[USACO08OPEN]牛的车Cow Cars

洛谷P2906 [USACO08OPEN]牛的街区Cow Neighborhoods

[USACO08OPEN]牛的街区Cow Neighborhoods

[bzoj3404] [Usaco2009 Open]Cow Digit Game又见数字游戏