POJ3579 Median
Posted 嘒彼小星
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了POJ3579 Median相关的知识,希望对你有一定的参考价值。
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 8371 | Accepted: 2911 |
Description
Given N numbers, X1, X2, ... , XN, let us calculate the difference of every pair of numbers: ∣Xi - Xj∣ (1 ≤ i < j ≤ N). We can get C(N,2) differences through this work, and now your task is to find the median of the differences as quickly as you can!
Note in this problem, the median is defined as the (m/2)-th smallest number if m,the amount of the differences, is even. For example, you have to find the third smallest one in the case of m = 6.
Input
The input consists of several test cases.
In each test case, N will be given in the first line. Then N numbers are given, representing X1, X2, ... , XN, ( Xi ≤ 1,000,000,000 3 ≤ N ≤ 1,00,000 )
Output
For each test case, output the median in a separate line.
Sample Input
4 1 3 2 4 3 1 10 2
Sample Output
1 8
Source
1 #include <iostream> 2 #include <cstdio> 3 #include <cstdlib> 4 #include <cstring> 5 #include <algorithm> 6 #define max(a, b) ((a) > (b) ? (a) : (b)) 7 #define min(a, b) ((a) < (b) ? (a) : (b)) 8 9 inline void read(long long &x) 10 { 11 x = 0;char ch = getchar(), c = ch; 12 while(ch < ‘0‘ || ch > ‘9‘)c = ch, ch = getchar(); 13 while(ch <= ‘9‘ && ch >= ‘0‘)x = x * 10 + ch - ‘0‘, ch = getchar(); 14 if(c == ‘-‘)x = -x; 15 } 16 17 const long long MAXN = 100000 + 10; 18 19 long long n,num[MAXN]; 20 21 long long check(long long ans) 22 { 23 long long tot = 0; 24 long long r = 2; 25 for(register long long l = 1;l <= n;++ l) 26 { 27 while(num[r] - num[l] <= ans && r <= n)++ r; 28 tot += r - l - 1; 29 } 30 if(tot >= (n * (n - 1)/2 + 1)/2 )return 1; 31 else return 0; 32 } 33 34 int main() 35 { 36 while(scanf("%lld", &n) != EOF) 37 { 38 long long ma = -1; 39 for(register long long i = 1;i <= n;++ i) read(num[i]), ma = max(ma, num[i]); 40 std::sort(num + 1, num + 1 + n); 41 long long l = 1, r = ma, ans = 0; 42 while(l <= r) 43 { 44 long long mid = (l + r) >> 1; 45 if(check(mid))ans = mid, r = mid - 1; 46 else l = mid + 1; 47 } 48 printf("%lld\n", ans); 49 } 50 return 0; 51 }
以上是关于POJ3579 Median的主要内容,如果未能解决你的问题,请参考以下文章