Tensorflow学习教程------非线性回归

Posted 行走的祭祀

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Tensorflow学习教程------非线性回归相关的知识,希望对你有一定的参考价值。

自己搭建神经网络求解非线性回归系数

代码

#coding:utf-8
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

#使用numpy 生成200个随机点
x_data = np.linspace(-0.5,0.5,200)[:,np.newaxis] #x_data:200行1列 数值在-0.5到0.5之间
noise = np.random.normal(0,0.02,x_data.shape)#noise :200行1列
y_data = np.square(x_data) + noise #y_data 200行1列

#定义两个placeholder
x = tf.placeholder(tf.float32, [None,1]) #x:任意行 1列
y = tf.placeholder(tf.float32, [None,1]) #y:任意行 1列


#输入的是一个数 输出的也是一个数 因此输入层和输出层都是一个神经元
#定义一个神经网络中间层 可以是任意个神经元 例如10个
#定义神经网络中间层
Weights_L1 = tf.Variable(tf.random_normal([1,10])) #1行10列
biase_L1 = tf.Variable(tf.zeros([1,10])) # 1,10
Wx_plus_b_L1 = tf.matmul(x, Weights_L1)+biase_L1 #x被正式赋值之后是200行1列 tf.matmul(x, Weights_L1)结果是200行10列 而biase_L1是1行10列 那么这俩怎么相加呢  在Python里面 200行10列的A向量+1行10列的B向量, 相当于给A向量每行加了B向量
L1 = tf.nn.tanh(Wx_plus_b_L1) #使用双曲正切函数作为激活函数 

#定义神经网络输出层
Weights_L2 = tf.Variable(tf.random_normal([10,1]))
biase_L2 = tf.Variable(tf.zeros([1,1]))
Wx_plus_b_L2 = tf.matmul(L1,Weights_L2) + biase_L2
prediction = tf.nn.tanh(Wx_plus_b_L2)

#二次代价函数
loss = tf.reduce_mean(tf.square(y - prediction))
#使用梯度下降法
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
with tf.Session() as sess:
    #变量初始化
    sess.run(tf.global_variables_initializer())
    for _ in range(2000):
        sess.run(train_step, feed_dict={x:x_data,y:y_data})
    #迭代2000次之后所有的权重值都求出来了
    #获得预测值
    prediction_value = sess.run(prediction,feed_dict={x:x_data})
    #画图
    plt.figure()
    plt.scatter(x_data,y_data) #画出散点图
    plt.plot(x_data,prediction_value,\'r-\',lw=5) #画出折线图
    plt.show()
 

结果

以上是关于Tensorflow学习教程------非线性回归的主要内容,如果未能解决你的问题,请参考以下文章

Tensorflow之单变量线性回归问题的解决方法

单变量线性回归:TensorFlow 实战(实战篇)

tensorflow 学习1——tensorflow 做线性回归

简单线性回归(sklearn + tensorflow)

机器学习与Tensorflow——机器学习基本概念tensorflow实现简单线性回归

机器学习系列-tensorflow-03-线性回归Linear Regression