Tensorflow学习教程------创建图启动图
Posted 行走的祭祀
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Tensorflow学习教程------创建图启动图相关的知识,希望对你有一定的参考价值。
Tensorflow作为目前最热门的机器学习框架之一,受到了工业界和学界的热门追捧。以下几章教程将记录本人学习tensorflow的一些过程。
在tensorflow这个框架里,可以讲是弱数据类型,也就是说不严格声明数据是什么类型,因为在整个过程中玩的都是向量,或者说矩阵和数组,所有的数据都被看做是一个tensor, 一个或者几个tensor经过一个op(operation)之后,产生新的tensor。首先将所有tensor和op都定义好,然后把这套tensor和op的组合放到默认的图里,用会话启动图,最后我们就看到结果了。以下是创建图和启动图的代码以及结果。
#coding:utf-8 import tensorflow as tf m1 = tf.constant([[3,3]]) m2 = tf.constant([[2],[3]]) product = tf.matmul(m1,m2) print (product) #定义一个会话 启动默认图 sess = tf.Session() #调用sess的run方法来执行矩阵乘法 result = sess.run(product) print (result) sess.close()
结果如下
I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcublas.so.8.0 locally I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcudnn.so.5 locally I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcufft.so.8.0 locally I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcuda.so.1 locally I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcurand.so.8.0 locally Tensor("MatMul:0", shape=(1, 1), dtype=int32) W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn‘t compiled to use SSE3 instructions, but these are available on your machine and could speed up CPU computations. W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn‘t compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations. W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn‘t compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations. W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn‘t compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations. W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn‘t compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations. W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn‘t compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations. I tensorflow/core/common_runtime/gpu/gpu_device.cc:885] Found device 0 with properties: name: GeForce GTX 1080 Ti major: 6 minor: 1 memoryClockRate (GHz) 1.582 pciBusID 0000:03:00.0 Total memory: 10.91GiB Free memory: 10.24GiB I tensorflow/core/common_runtime/gpu/gpu_device.cc:906] DMA: 0 I tensorflow/core/common_runtime/gpu/gpu_device.cc:916] 0: Y I tensorflow/core/common_runtime/gpu/gpu_device.cc:975] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:03:00.0) [[15]]
以上是关于Tensorflow学习教程------创建图启动图的主要内容,如果未能解决你的问题,请参考以下文章
人工智能深度学习入门练习之(21)TensorFlow – 创建计算图
自学tensorflow——1.框架初步了解以及构建简单的计算图计算