HDU-2086 A1 = ?
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了HDU-2086 A1 = ?相关的知识,希望对你有一定的参考价值。
题目
Problem Description
若给出A0, An+1和 C1, C2, ..., Cn。
请编程计算A1 = ?
Input
对于每个实例,首先是一个正整数n( n <= 3000 );然后是2个数a0, an+1;接下来的n行每行有一个数ci( i = 1, ...., n );输入以文件结束符结束。
Output
Sample Input
1 50.00 25.00 10.00 2 50.00 25.00 10.00 20.00
Sample Output
27.50 15.00
题解
本题完全是一道数学题……推论过程如下:
下证A1 = ( nA0 + An+1 - 2( nC1 + ( n - 1 )C2 + ( n - 2 )C3 + ... + Cn ) ) / ( n + 1 ):
由题中条件
Ai = ( Ai-1 + Ai+1 ) / 2 - Ci
化简得
2Ai = Ai-1 + Ai+1 - 2Ci
即
A1 + A1 = A0 + A2 - 2C1
A2 + A2 = A1 + A3 - 2C2
A3 + A3 = A2 + A4 - 2C3
...
An + An = An-1 + An+1 - 2Cn
左右求和错位相消得
A1 + An = A0 + An+1 - 2( ∑_( i = 1 )^n [Ci] )
即
A1 + A1 = A0 + A2 - 2( C1 )
A1 + A2 = A0 + A3 - 2( C1 + C2 )
A1 + A3 = A0 + A4 - 2( C1 + C2 + C3 )
...
A1 + An = A0 + An+1 - 2( C1 + C2+ C3 + ... + Cn )
左右求和错位相消得
( n + 1 )A1 = nA0 + An+1 - 2( ∑_( i = 1 )^n [( n - i + 1 )Ci] )
即
( n + 1 )A1 = nA0 + An+1 - 2( nC1 + ( n - 1 )C2 + ( n - 2 )C3 + ... + Cn )
求得
A1 = ( nA0 + An+1 - 2( nC1 + ( n - 1 )C2 + ( n - 2 )C3 + ... + Cn ) ) / ( n + 1 )
证毕!
然后用程序计算得出答案即可。
代码
#include <iostream> #include <cmath> using namespace std; int n; double a_0,a_n; double c[5005]; int main() { while(scanf("%d",&n)!=EOF) { scanf("%lf%lf",&a_0,&a_n); for(int i=1;i<=n;i++) scanf("%lf",&c[i]); double ans=0; for(int i=1;i<=n;i++) ans=ans+(n-i+1)*c[i]; ans=(n*a_0+a_n-2*ans)/(n+1); printf("%.2lf\n",ans); } return 0; }
以上是关于HDU-2086 A1 = ?的主要内容,如果未能解决你的问题,请参考以下文章