2017年ACM第八届山东省赛A题:Return of the Nim

Posted 0一叶0知秋0

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了2017年ACM第八届山东省赛A题:Return of the Nim相关的知识,希望对你有一定的参考价值。

A题:Return of the Nim

时间限制: 1 秒  内存限制: 64 MB  |  提交: 33  解决: 16
 

 

题目描述

Sherlock and Watson are playing the following modified version of Nim game:

  • There are n piles of stones denoted aspiles0,piles1,...,pilesn-1, and n is a prime number;
  • Sherlock always plays first, and Watson and he move in alternating turns. During each turn, the current player must perform either of the following two kinds of moves:
    1. Choose one pile and remove k(k >0) stones from it;
    2. Remove k stones from all piles, where 1≤kthe size of the smallest pile. This move becomes unavailable if any pile is empty.
  • Each player moves optimally, meaning they will not make a move that causes them to lose if there are still any better or winning moves.
Giving the initial situation of each game, you are required to figure out who will be the winner

输入


The first contains an integer, g, denoting the number of games. The 2×g subsequent lines describe each game over two lines:
1. The first line contains a prime integer, n, denoting the number of piles.
2. The second line contains n space-separated integers describing the respective values of piles0,piles1,...,pilesn-1.

  • 1≤g≤15
  • 2≤n≤30, where n is a prime.
  • 1≤pilesi105 where 0≤in?1


输出

For each game, print the name of the winner on a new line (i.e., either “Sherlock”or “Watson”)

样例输入

2
3
2 3 2
2
2 1

样例输出

Sherlock
Watson
题意:有 T 组数据
   每组数据 n 堆石子
   每堆石子 num【i】
   sherlock先取 取到最后一颗石子为胜
   n == 2 为 威佐夫博弈
   n > 2 为 NIM博弈
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std ; 

#define maxn 100 
#define LL long long 
LL num[maxn] ; 

int main(){
    int n ; 
    int t ; 
    scanf("%d" , &t) ; 
    while(t--){
        scanf("%d" , &n) ; 
        for(int i=0 ; i<n ; i++){
            scanf("%d" , &num[i]) ; 
        }
        
        if(n==2){//威佐夫博弈
            if(num[0] < num[1]){
                swap(num[0],num[1]) ; 
            } 
            if((LL)((num[0]-num[1]) * (1.0 + sqrt(5.0))/2.0) == num[1]){
                printf("Watson\n") ; 
            }else printf("Sherlock\n") ; 
        }
        else {//NIM  游戏
            LL k = num[0] ; 
            for(int i=1 ; i<n ; i++){
                k = k ^ num[i] ; 
            } 
            if(k==0){
                printf("Watson\n") ; 
            }else printf("Sherlock\n") ; 
        }
        
    }
    return 0 ; 
}

 


以上是关于2017年ACM第八届山东省赛A题:Return of the Nim的主要内容,如果未能解决你的问题,请参考以下文章

2017年ACM第八届山东省赛F题:quadratic equation(离散数学蕴含式)

2017年ACM第八届山东省赛G题:sum of power

2017年ACM第八届山东省赛I题: Parity check(判断 第n项斐波那契数列奇偶性)

山东省第八届ACM省赛游记

第八届山东ACM省赛F题-quadratic equation

第八届山东省ACM大学生程序设计竞赛个人总结