2017年ACM第八届山东省赛A题:Return of the Nim
Posted 0一叶0知秋0
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了2017年ACM第八届山东省赛A题:Return of the Nim相关的知识,希望对你有一定的参考价值。
A题:Return of the Nim
时间限制: 1 秒 内存限制: 64 MB | 提交: 33 解决: 16
题目描述
Sherlock and Watson are playing the following modified version of Nim game:
- There are n piles of stones denoted aspiles0,piles1,...,pilesn-1, and n is a prime number;
- Sherlock always plays first, and Watson and he move in alternating turns. During each turn, the current player must perform either of the following two kinds of moves:
- Choose one pile and remove k(k >0) stones from it;
- Remove k stones from all piles, where 1≤k≤the size of the smallest pile. This move becomes unavailable if any pile is empty.
- Each player moves optimally, meaning they will not make a move that causes them to lose if there are still any better or winning moves.
输入
The first contains an integer, g, denoting the number of games. The 2×g subsequent lines describe each game over two lines:
1. The first line contains a prime integer, n, denoting the number of piles.
2. The second line contains n space-separated
integers describing the respective values of piles0,piles1,...,pilesn-1.
- 1≤g≤15
- 2≤n≤30, where n is a prime.
- 1≤pilesi≤105 where 0≤i≤n?1
输出
样例输入
2 3 2 3 2 2 2 1
样例输出
Sherlock Watson
题意:有 T 组数据
每组数据 n 堆石子
每堆石子 num【i】
sherlock先取 取到最后一颗石子为胜
n == 2 为 威佐夫博弈
n > 2 为 NIM博弈
#include <cstdio> #include <iostream> #include <algorithm> #include <cmath> using namespace std ; #define maxn 100 #define LL long long LL num[maxn] ; int main(){ int n ; int t ; scanf("%d" , &t) ; while(t--){ scanf("%d" , &n) ; for(int i=0 ; i<n ; i++){ scanf("%d" , &num[i]) ; } if(n==2){//威佐夫博弈 if(num[0] < num[1]){ swap(num[0],num[1]) ; } if((LL)((num[0]-num[1]) * (1.0 + sqrt(5.0))/2.0) == num[1]){ printf("Watson\n") ; }else printf("Sherlock\n") ; } else {//NIM 游戏 LL k = num[0] ; for(int i=1 ; i<n ; i++){ k = k ^ num[i] ; } if(k==0){ printf("Watson\n") ; }else printf("Sherlock\n") ; } } return 0 ; }
以上是关于2017年ACM第八届山东省赛A题:Return of the Nim的主要内容,如果未能解决你的问题,请参考以下文章
2017年ACM第八届山东省赛F题:quadratic equation(离散数学蕴含式)
2017年ACM第八届山东省赛G题:sum of power
2017年ACM第八届山东省赛I题: Parity check(判断 第n项斐波那契数列奇偶性)