bzoj4870: [Shoi2017]组合数问题(DP+矩阵乘法优化)

Posted Sakits

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了bzoj4870: [Shoi2017]组合数问题(DP+矩阵乘法优化)相关的知识,希望对你有一定的参考价值。

  为了1A我居然写了个暴力对拍...

  那个式子本质上是求nk个数里选j个数,且j%k==r的方案数。

  所以把组合数的递推式写出来f[i][j]=f[i-1][j]+f[i-1][(j-1+k)%k]...我们知道求组合数实际上是可以矩阵乘法优化的,只是没必要,但是这个时候就用上了...

  于是矩阵乘法优化,AC之~

技术分享
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio> 
#include<algorithm>
#define ll long long 
#define MOD(x) ((x)>=p?(x)-p:(x))
using namespace std;
const int maxn=310,inf=1e9;
typedef ll mtx[60][60];
int n,p,K,r;
mtx f,g;
void read(int &k)
{
    int f=1;k=0;char c=getchar();
    while(c<0||c>9)c==-&&(f=-1),c=getchar();
    while(c<=9&&c>=0)k=k*10+c-0,c=getchar();
    k*=f;
}
void mul(mtx &a,mtx b)
{
    mtx c;memset(c,0,sizeof(c));
    for(int i=1;i<=K;i++)
    for(int j=1;j<=K;j++)
    for(int k=1;k<=K;k++)
    c[i][j]=(c[i][j]+a[i][k]*b[k][j])%p;
    memcpy(a,c,sizeof(c));
}
void power(ll b)
{
    for(;b;mul(f,f),b>>=1)
    if(b&1)mul(g,f);
}
int main()
{
    read(n);read(p);read(K);read(r);
    for(int i=1;i<=K;i++)g[i][i]=1,f[i][i]=1;
    for(int i=1;i<=K;i++)f[i][(i-2+K)%K+1]++;
    power(1ll*n*K);
    printf("%lld\n",g[r+1][1]);
}
View Code

 

以上是关于bzoj4870: [Shoi2017]组合数问题(DP+矩阵乘法优化)的主要内容,如果未能解决你的问题,请参考以下文章

BZOJ4870:[SHOI2017]组合数问题——题解

bzoj 4870: [Shoi2017]组合数问题

[Shoi2017]组合数问题 BZOJ4870

bzoj4870: [Shoi2017]组合数问题(DP+矩阵乘法优化)

BZOJ 4870 [Shoi2017]组合数问题 ——动态规划 矩阵乘法

BZOJ 4870[HEOI2017]组合数问题