POJ2533 Longest Ordered Subsequence —— DP 最长上升子序列(LIS)
Posted h_z_cong
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了POJ2533 Longest Ordered Subsequence —— DP 最长上升子序列(LIS)相关的知识,希望对你有一定的参考价值。
题目链接:http://poj.org/problem?id=2533
Longest Ordered Subsequence
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 55459 | Accepted: 24864 |
Description
A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1, a2, ..., aN) be any sequence (ai1, ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK <= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).
Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.
Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.
Input
The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000
Output
Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.
Sample Input
7 1 7 3 5 9 4 8
Sample Output
4
Source
Northeastern Europe 2002, Far-Eastern Subregion
O(n^2):
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <cmath> 5 #include <algorithm> 6 #include <vector> 7 #include <queue> 8 #include <stack> 9 #include <map> 10 #include <string> 11 #include <set> 12 #define ms(a,b) memset((a),(b),sizeof((a))) 13 using namespace std; 14 typedef long long LL; 15 const double EPS = 1e-8; 16 const int INF = 2e9; 17 const LL LNF = 2e18; 18 const int MAXN = 1e6+10; 19 20 int dp[MAXN], a[MAXN]; 21 22 int main() 23 { 24 int n; 25 while(scanf("%d",&n)!=EOF) 26 { 27 for(int i = 1; i<=n; i++) 28 scanf("%d",&a[i]); 29 30 ms(dp, 0); 31 for(int i = 1; i<=n; i++) 32 for(int j = 0; j<i; j++) 33 if(j==0 || a[i]>a[j]) 34 dp[i] = max(dp[i], dp[j]+1); 35 36 int ans = -INF; 37 for(int i = 1; i<=n; i++) 38 ans = max(ans, dp[i]); 39 printf("%d\n",ans); 40 } 41 }
O(nlogn):
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <cmath> 5 #include <algorithm> 6 #include <vector> 7 #include <queue> 8 #include <stack> 9 #include <map> 10 #include <string> 11 #include <set> 12 #define ms(a,b) memset((a),(b),sizeof((a))) 13 using namespace std; 14 typedef long long LL; 15 const double EPS = 1e-8; 16 const int INF = 2e9; 17 const LL LNF = 2e18; 18 const int MAXN = 1e6+10; 19 20 int dp[MAXN], a[MAXN]; 21 22 int main() 23 { 24 int n; 25 while(scanf("%d",&n)!=EOF) 26 { 27 for(int i = 1; i<=n; i++) 28 scanf("%d",&a[i]); 29 30 int len = 0; 31 for(int i = 1; i<=n; i++) 32 { 33 if(i==1 || a[i]>dp[len]) 34 dp[++len] = a[i]; 35 36 else 37 { 38 int pos = lower_bound(dp+1,dp+1+len,a[i]) - (dp+1); 39 dp[pos+1] = a[i]; 40 } 41 } 42 printf("%d\n",len); 43 } 44 }
以上是关于POJ2533 Longest Ordered Subsequence —— DP 最长上升子序列(LIS)的主要内容,如果未能解决你的问题,请参考以下文章
POJ 2533 Longest Ordered Subsequence
POJ2533:Longest Ordered Subsequence
POJ 2533 Longest Ordered Subsequence
poj 2533 Longest Ordered Subsequence(LIS)