POJ1458 Common Subsequence —— DP 最长公共子序列(LCS)
Posted h_z_cong
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了POJ1458 Common Subsequence —— DP 最长公共子序列(LCS)相关的知识,希望对你有一定的参考价值。
题目链接:http://poj.org/problem?id=1458
Common Subsequence
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 55099 | Accepted: 22973 |
Description
A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.
Input
The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.
Output
For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.
Sample Input
abcfbc abfcab programming contest abcd mnp
Sample Output
4 2 0
Source
代码如下:
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <cmath> 5 #include <algorithm> 6 #include <vector> 7 #include <queue> 8 #include <stack> 9 #include <map> 10 #include <string> 11 #include <set> 12 #define ms(a,b) memset((a),(b),sizeof((a))) 13 using namespace std; 14 typedef long long LL; 15 const double EPS = 1e-8; 16 const int INF = 2e9; 17 const LL LNF = 2e18; 18 const int MAXN = 1e3+10; 19 20 char a[MAXN], b[MAXN]; 21 int dp[MAXN][MAXN]; 22 23 int main() 24 { 25 while(scanf("%s%s", a+1, b+1)!=EOF) 26 { 27 int n = strlen(a+1); 28 int m = strlen(b+1); 29 30 ms(dp, 0); 31 for(int i = 1; i<=n; i++) 32 for(int j = 1; j<=m; j++) 33 { 34 if(a[i]==b[j]) 35 dp[i][j] = dp[i-1][j-1]+1; 36 else 37 dp[i][j] = max(dp[i][j-1], dp[i-1][j]); 38 } 39 printf("%d\n", dp[n][m]); 40 } 41 }
以上是关于POJ1458 Common Subsequence —— DP 最长公共子序列(LCS)的主要内容,如果未能解决你的问题,请参考以下文章
poj 1458 Common Subsequence(dp)
POJ 1458 - Common Subsequence(最长公共子串)