sklearn学习_01

Posted 今夜无风

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了sklearn学习_01相关的知识,希望对你有一定的参考价值。

 1 # -*- coding: utf-8 -*-
 2 """
 3 Created on Fri Sep 29 11:05:52 2017
 4 机器学习之sklearn
 5 @author: den
 6 """
 7 # 导入数据集
 8 from sklearn import datasets
 9 # 进行交叉验证
10 from sklearn.cross_validation import train_test_split
11 # 导入标准化尺度
12 from sklearn.preprocessing import StandardScaler
13 # 导入感知机算法
14 from sklearn.linear_model import Perceptron
15 # 计算分类的准确率
16 from sklearn.metrics import accuracy_score
17 
18 # 加载数据
19 iris = datasets.load_iris()
20 # 样本的后两位特征
21 X = iris.data[:,[2,3]]
22 # 目标类别
23 y = iris.target
24 # 获取30%的测试集,70%的训练集
25 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
26 # 标准化操作,训练集和测试集使用相同的标准化
27 sc = StandardScaler()
28 # 估算每个特征的平均值和标准差
29 sc.fit(X_train)
30 # 使用同样的均值和标准差归一化训练集和测试集
31 sc.transform(X_train)
32 sc.transform(X_test)
33 
34 
35 # 获得ppn对象
36 ppn = Perceptron(n_iter=40, eta0=0.5)
37 # 拟合
38 ppn.fit(X_train, y_train)
39 # 预测
40 y_pred = ppn.predict(X_test)
41 # 打印错分率
42 print (错分样本的个数为:%d % (y_test != y_pred).sum())
43 # 计算准确率
44 print (模型的准确率为:%.2f % accuracy_score(y_test, y_pred))

 

以上是关于sklearn学习_01的主要内容,如果未能解决你的问题,请参考以下文章

03_有监督学习--简单线性回归模型(调用 sklearn 库代码实现)

莫烦sklearn学习自修第九天过拟合问题处理

sklearn实现一元线性回归 Python机器学习系列

莫烦sklearn学习自修第八天过拟合问题

sklearn 上的 PCA - 如何解释 pca.components_

01_机器学习简介