学习Numpy基础操作
Posted Jasonhaven.D
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了学习Numpy基础操作相关的知识,希望对你有一定的参考价值。
# coding:utf-8
import numpy as np
from numpy.linalg import *
def day1():
\'\'\'
ndarray
:return:
\'\'\'
lst = [[1, 2, 3], [4, 5, 6]]
print(type(lst))
np_lst = np.array(lst)
print(type(np_lst))
np_lst = np.array(lst, dtype=np.float)
# bool
# int,int8,int16,int32,int64,int128
# uint8,uint16,uint32,uint64,uint128
# float,float8,float16,float32,float64
# complex64/128
print(np_lst.shape)
print(np_lst.ndim) # dimnation(维度)
print(np_lst.dtype)
print(np_lst.itemsize) # Byte
print(np_lst.size) # 元素个数
def day2():
\'\'\'
Array
:return:
\'\'\'
print(np.zeros([2, 4]))
print(np.ones([3, 5]))
print("Rand:")
print(np.random.rand(2, 4))
print(np.random.rand())
print("RandInt:")
print(np.random.randint(1, 10))
print(np.random.randint(1, 10, 3))
print("Randn:")
print(np.random.randn(2, 4))
print(\'Choice:\')
print(np.random.choice([10, 20, 30, 2, 5, 7]))
print(\'Distribute:\')
print(np.random.beta(1, 10, 100))
def day3():
\'\'\'
Array Opes
:return:
\'\'\'
print(np.arange(1, 11).reshape(2, 5))
lst = np.arange(1, 11).reshape(2, 5)
print(lst)
print(np.exp(lst))
print(np.exp2(lst))
print(np.sqrt(lst))
print(np.log(lst))
print(\'...\')
lst = np.array([
[[1, 2, 3, 4], [5, 6, 7, 8]],
[[9, 10, 11, 12], [13, 14, 15, 16]],
[[17, 18, 19, 20], [21, 22, 23, 24]]
])
print(\'axis=0\')
print(lst.sum(axis=0))
print(lst.max(axis=0), lst.min(axis=0))
print(\'axis=1\')
print(lst.sum(axis=1))
print(lst.max(axis=0), lst.min(axis=0))
print(\'...\')
lst1 = np.array([1, 2, 3, 4])
lst2 = np.array([1, 2, 3, 4])
print(lst1 + lst2)
print(lst1 * lst2)
print(lst1 / lst2)
print(lst1 - lst2)
print(lst1 ** 2)
print(\'Dot\')
print(np.dot(lst1.reshape([2, 2]), lst2.reshape([2, 2])))
print(\'Concatenate\')
print(np.concatenate((lst1, lst2), axis=0))
print(np.vstack((lst1, lst2)))
print(np.hstack((lst1, lst2)))
print(np.split(lst1, 2))
print(np.split(lst1, 4))
print(np.copy(lst1))
def day4():
\'\'\'
linear
:return:
\'\'\'
lst = np.array([[1, 2], [3, 4]])
print(lst)
print(inv(lst)) # 矩阵的逆矩阵
print(lst.transpose()) # 转置矩阵
print(det(lst)) # 行列式
print(eig(lst)) # 特征值和特征向量
y = np.array([[5, ], [7, ]])
print(solve(lst, y)) # 解方程组
if __name__ == \'__main__\':
pass
以上是关于学习Numpy基础操作的主要内容,如果未能解决你的问题,请参考以下文章