POJ2253 Frogger —— 最短路变形

Posted h_z_cong

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了POJ2253 Frogger —— 最短路变形相关的知识,希望对你有一定的参考价值。

题目链接:http://poj.org/problem?id=2253

 

Frogger
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 49409   Accepted: 15729

Description

Freddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fiona Frog who is sitting on another stone. He plans to visit her, but since the water is dirty and full of tourists‘ sunscreen, he wants to avoid swimming and instead reach her by jumping. 
Unfortunately Fiona‘s stone is out of his jump range. Therefore Freddy considers to use other stones as intermediate stops and reach her by a sequence of several small jumps. 
To execute a given sequence of jumps, a frog‘s jump range obviously must be at least as long as the longest jump occuring in the sequence. 
The frog distance (humans also call it minimax distance) between two stones therefore is defined as the minimum necessary jump range over all possible paths between the two stones. 

You are given the coordinates of Freddy‘s stone, Fiona‘s stone and all other stones in the lake. Your job is to compute the frog distance between Freddy‘s and Fiona‘s stone. 

Input

The input will contain one or more test cases. The first line of each test case will contain the number of stones n (2<=n<=200). The next n lines each contain two integers xi,yi (0 <= xi,yi <= 1000) representing the coordinates of stone #i. Stone #1 is Freddy‘s stone, stone #2 is Fiona‘s stone, the other n-2 stones are unoccupied. There‘s a blank line following each test case. Input is terminated by a value of zero (0) for n.

Output

For each test case, print a line saying "Scenario #x" and a line saying "Frog Distance = y" where x is replaced by the test case number (they are numbered from 1) and y is replaced by the appropriate real number, printed to three decimals. Put a blank line after each test case, even after the last one.

Sample Input

2
0 0
3 4

3
17 4
19 4
18 5

0

Sample Output

Scenario #1
Frog Distance = 5.000

Scenario #2
Frog Distance = 1.414

Source

 
 
 
题解:
 
 
 
代码如下:
技术分享
 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cstring>
 4 #include <algorithm>
 5 #include <vector>
 6 #include <cmath>
 7 #include <queue>
 8 #include <stack>
 9 #include <map>
10 #include <string>
11 #include <set>
12 #define rep(i,a,n) for(int (i) = a; (i)<=(n); (i)++)
13 #define ms(a,b) memset((a),(b),sizeof((a)))
14 using namespace std;
15 typedef long long LL;
16 const double EPS = 1e-8;
17 const int INF = 2e9;
18 const LL LNF = 9e18;
19 const int MOD = 1e9+7;
20 const int MAXN = 1e3+10;
21 
22 int n;
23 
24 struct edge
25 {
26     double w;
27     int to, next;
28 }edge[MAXN*MAXN];
29 int cnt, head[MAXN];
30 
31 void addedge(int u, int v, double w)
32 {
33     edge[cnt].to = v;
34     edge[cnt].w = w;
35     edge[cnt].next = head[u];
36     head[u] = cnt++;
37 }
38 
39 void init()
40 {
41     cnt = 0;
42     memset(head, -1, sizeof(head));
43 }
44 
45 double dis[MAXN];
46 bool vis[MAXN];
47 void dijkstra(int st)
48 {
49     memset(vis, 0, sizeof(vis));
50     for(int i = 1; i<=n; i++)
51         dis[i] = (i==st?0:INF);
52 
53     for(int i = 1; i<=n; i++)
54     {
55         int k;
56         double minn = INF;
57         for(int j = 1; j<=n; j++)
58             if(!vis[j] && dis[j]<minn)
59                 minn = dis[k=j];
60 
61         vis[k] = 1;
62         for(int j = head[k]; j!=-1; j = edge[j].next)
63             if(!vis[edge[j].to])
64                 dis[edge[j].to] = min(dis[edge[j].to], max(dis[k], edge[j].w) );
65     }
66 }
67 
68 int x[MAXN], y[MAXN];
69 int main()
70 {
71     int kase = 0;
72     while(scanf("%d", &n) && n)
73     {
74         init();
75         for(int i = 1; i<=n; i++)
76             scanf("%d%d", &x[i], &y[i]);
77         for(int i = 1; i<=n; i++)
78             for(int j = 1; j<=n; j++)
79                 addedge(i, j, sqrt( (x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j])) );
80 
81         dijkstra(1);
82         printf("Scenario #%d\n", ++kase);
83         printf("Frog Distance = %.3f\n\n", dis[2]);
84     }
85 }
View Code

 






以上是关于POJ2253 Frogger —— 最短路变形的主要内容,如果未能解决你的问题,请参考以下文章

POJ 2253 Frogger(Dijkstra变形——最短路径最小权值)

POJ_2253 Frogger 最短路变形

POJ-2253-Frogger +最短路小变形

[ACM] POJ 2253 Frogger (最短路径变形,每条通路中的最长边的最小值)

POJ-2253 Frogger---最短路变形&&最大边的最小值

POJ 2253 Frogger最短路变形/kruskal/A到B多条路径中的最小的最长边