numpy

Posted 塔上的樹

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了numpy相关的知识,希望对你有一定的参考价值。

np.sum()

http://blog.csdn.net/ikerpeng/article/details/17026011

我们平时用的sum应该是默认的axis=0 就是普通的相加 (对不起,写的不好,看下面的)

 

而当加入axis=1以后就是将一个矩阵的每一行向量相加

 

例如:

import numpy as np

np.sum([[0,1,2],[2,1,3]],axis=1)的结果就是:array([3,6])

 

希望可以帮到你 呵呵

 

Sorry,以前学习阶段写东西比较随意,现在补充完善一下:

1. python 自己的sum()

输入的参数首先是[]

 

[python] view plain copy
 
  1. >>> sum([0,1,2])  
  2. 3  
  3. >>> sum([0,1,2],3)  
  4. 6  
  5. >>> sum([0,1,2],[3,2,1])  
  6. Traceback (most recent call last):  
  7.   File "<stdin>", line 1, in <module>  
  8. TypeError: can only concatenate list (not "int") to list  



 

2.python的 numpy当中

现在对于数据的处理更多的还是numpy。没有axis参数表示全部相加,axis=0表示按列相加,axis=1表示按照行的方向相加

 

[python] view plain copy
 
    1. >>> import numpy as np  
    2. >>> a=np.sum([[0,1,2],[2,1,3]])  
    3. >>> a  
    4. 9  
    5. >>> a.shape  
    6. ()  
    7. >>> a=np.sum([[0,1,2],[2,1,3]],axis=0)  
    8. >>> a  
    9. array([2, 2, 5])  
    10. >>> a.shape  
    11. (3,)  
    12. >>> a=np.sum([[0,1,2],[2,1,3]],axis=1)  
    13. >>> a  
    14. array([3, 6])  
    15. >>> a.shape  
    16. (2,)  

http://www.cnblogs.com/100thMountain/p/4719488.html

numpy.sum

numpy.sum(aaxis=Nonedtype=Noneout=Nonekeepdims=False)[source]

Sum of array elements over a given axis.

Parameters:

a : array_like

Elements to sum.

axis : None or int or tuple of ints, optional

Axis or axes along which a sum is performed. The default (axis = None) is perform a sum over all the dimensions of the input array. axis may be negative, in which case it counts from the last to the first axis.

New in version 1.7.0.

If this is a tuple of ints, a sum is performed on multiple axes, instead of a single axis or all the axes as before.

dtype : dtype, optional

The type of the returned array and of the accumulator in which the elements are summed. By default, the dtype of a is used. An exception is when a has an integer type with less precision than the default platform integer. In that case, the default platform integer is used instead.

out : ndarray, optional

Array into which the output is placed. By default, a new array is created. If out is given, it must be of the appropriate shape (the shape of a with axis removed, i.e., numpy.delete(a.shape, axis)). Its type is preserved. See doc.ufuncs (Section “Output arguments”) for more details.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original arr.

Returns:

sum_along_axis : ndarray

An array with the same shape as a, with the specified axis removed. If a is a 0-d array, or if axis is None, a scalar is returned. If an output array is specified, a reference to out is returned.

See also

ndarray.sum
Equivalent method.
cumsum
Cumulative sum of array elements.
trapz
Integration of array values using the composite trapezoidal rule.

meanaverage

Notes

Arithmetic is modular when using integer types, and no error is raised on overflow.

Examples

>>>
>>> np.sum([0.5, 1.5])
2.0
>>> np.sum([0.5, 0.7, 0.2, 1.5], dtype=np.int32)
1
>>> np.sum([[0, 1], [0, 5]])
6
>>> np.sum([[0, 1], [0, 5]], axis=0)    #axis=0是按列求和
array([0, 6])
>>> np.sum([[0, 1], [0, 5]], axis=1)    #axis=1 是按行求和
array([1, 5])

If the accumulator is too small, overflow occurs:

>>>
>>> np.ones(128, dtype=np.int8).sum(dtype=np.int8)
-128

 

以上是关于numpy的主要内容,如果未能解决你的问题,请参考以下文章

'numpy.ndarray':对象不可调用错误

乐哥学AI_Python:Numpy索引,切片,常用函数

对数据进行去均值并转换为 numpy 数组

Jax 矢量化:vmap 和/或 numpy.vectorize?

微信小程序代码片段

VSCode自定义代码片段——CSS选择器