laplace transform 拉普拉斯变换

Posted FDU大学渣——海疯习习

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了laplace transform 拉普拉斯变换相关的知识,希望对你有一定的参考价值。

参考网址:

1. https://en.wikipedia.org/wiki/First-hitting-time_model

2. https://en.wikipedia.org/wiki/Laplace_transform

 

Probability theory

 

By abuse of language, this is referred to as the Laplace transform of the random variable X itself. Replacing s by t gives the moment generating function of X. The Laplace transform has applications throughout probability theory, including first passage times of stochastic processessuch as Markov chains, and renewal theory.

Of particular use is the ability to recover the cumulative distribution function of a continuous random variable X by means of the Laplace transform as follows[11]

{\\displaystyle F_{X}(x)={\\mathcal {L}}^{-1}\\!\\left\\{{\\frac {1}{s}}E\\left[e^{-sX}\\right]\\right\\}\\!(x)={\\mathcal {L}}^{-1}\\!\\left\\{{\\frac {1}{s}}{\\mathcal {L}}\\{f\\}(s)\\right\\}\\!(x).}F_{X}(x)={\\mathcal {L}}^{-1}\\!\\left\\{{\\frac {1}{s}}E\\left[e^{-sX}\\right]\\right\\}\\!(x)={\\mathcal {L}}^{-1}\\!\\left\\{{\\frac {1}{s}}{\\mathcal {L}}\\{f\\}(s)\\right\\}\\!(x).

以上是关于laplace transform 拉普拉斯变换的主要内容,如果未能解决你的问题,请参考以下文章

一道拉普拉斯逆变换练习题和对应的数值计算方法

差分近似图像导数算子之Laplace算子

数理方程:Laplace变换

拉普拉斯分布(Laplace distribution)

拉普拉斯变换

拉普拉斯矩阵(Laplace Matrix)与瑞利熵(Rayleigh quotient)