遗传算法Population
Posted Michael2397
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了遗传算法Population相关的知识,希望对你有一定的参考价值。
package chapter2; import java.util.Arrays; import java.util.Comparator; import java.util.Random; /** * A population is an abstraction of a collection of individuals. The population * class is generally used to perform group-level operations on its individuals, * such as finding the strongest individuals, collecting stats on the population * as a whole, and selecting individuals to mutate or crossover. * * @author bkanber * */ public class Population { private Individual population[]; private double populationFitness = -1; /** * Initializes blank population of individuals * * @param populationSize * The number of individuals in the population */ public Population(int populationSize) { // Initial population this.population = new Individual[populationSize]; } /** * Initializes population of individuals * * @param populationSize * The number of individuals in the population * @param chromosomeLength * The size of each individual‘s chromosome */ public Population(int populationSize, int chromosomeLength) { // Initialize the population as an array of individuals this.population = new Individual[populationSize]; // Create each individual in turn for (int individualCount = 0; individualCount < populationSize; individualCount++) { // Create an individual, initializing its chromosome to the given // length Individual individual = new Individual(chromosomeLength); // Add individual to population this.population[individualCount] = individual; } } /** * Get individuals from the population * * @return individuals Individuals in population */ public Individual[] getIndividuals() { return this.population; } /** * Find an individual in the population by its fitness * * This method lets you select an individual in order of its fitness. This * can be used to find the single strongest individual (eg, if you‘re * testing for a solution), but it can also be used to find weak individuals * (if you‘re looking to cull the population) or some of the strongest * individuals (if you‘re using "elitism"). * * @param offset * The offset of the individual you want, sorted by fitness. 0 is * the strongest, population.length - 1 is the weakest. * @return individual Individual at offset */ public Individual getFittest(int offset) { // Order population by fitness Arrays.sort(this.population, new Comparator<Individual>() { @Override public int compare(Individual o1, Individual o2) { if (o1.getFitness() > o2.getFitness()) { return -1; } else if (o1.getFitness() < o2.getFitness()) { return 1; } return 0; } }); // Return the fittest individual return this.population[offset]; } /** * Set population‘s group fitness * * @param fitness * The population‘s total fitness */ public void setPopulationFitness(double fitness) { this.populationFitness = fitness; } /** * Get population‘s group fitness * * @return populationFitness The population‘s total fitness */ public double getPopulationFitness() { return this.populationFitness; } /** * Get population‘s size * * @return size The population‘s size */ public int size() { return this.population.length; } /** * Set individual at offset * * @param individual * @param offset * @return individual */ public Individual setIndividual(int offset, Individual individual) { return population[offset] = individual; } /** * Get individual at offset * * @param offset * @return individual */ public Individual getIndividual(int offset) { return population[offset]; } /** * Shuffles the population in-place * * @param void * @return void */ public void shuffle() { Random rnd = new Random(); for (int i = population.length - 1; i > 0; i--) { int index = rnd.nextInt(i + 1); Individual a = population[index]; population[index] = population[i]; population[i] = a; } } }
以上是关于遗传算法Population的主要内容,如果未能解决你的问题,请参考以下文章