opencv使用convexityDefects计算轮廓凸缺陷

Posted Anita-ff 的图像处理之旅

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了opencv使用convexityDefects计算轮廓凸缺陷相关的知识,希望对你有一定的参考价值。

引自:http://www.xuebuyuan.com/1684976.html

http://blog.csdn.net/lichengyu/article/details/38392473

http://www.cnblogs.com/yemeishu/archive/2013/01/19/2867286.html谈谈NITE 2与OpenCV结合提取指尖坐标

 

一 概念:

Convexity hull, Convexity defects

 

 

 

如上图所示,黑色的轮廓线为convexity hull, 而convexity hull与手掌之间的部分为convexity defects. 每个convexity defect区域有四个特征量:起始点(startPoint),结束点(endPoint),距离convexity hull最远点(farPoint),最远点到convexity hull的距离(depth)。

 

二.OpenCV中的相关函数

void convexityDefects(InputArray contour, InputArray convexhull, OutputArrayconvexityDefects)

参数:

coutour: 输入参数,检测到的轮廓,可以调用findContours函数得到;

convexhull: 输入参数,检测到的凸包,可以调用convexHull函数得到。注意,convexHull函数可以得到vector<vector<Point>>和vector<vector<int>>两种类型结果,这里的convexhull应该为vector<vector<int>>类型,否则通不过ASSERT检查;

convexityDefects:输出参数,检测到的最终结果,应为vector<vector<Vec4i>>类型,Vec4i存储了起始点(startPoint),结束点(endPoint),距离convexity hull最远点(farPoint)以及最远点到convexity hull的距离(depth)

 

三.代码

//http://docs.opencv.org/doc/tutorials/imgproc/shapedescriptors/hull/hull.html
//http://www.codeproject.com/Articles/782602/Beginners-guide-to-understand-Fingertips-counting

#include "opencv2/highgui/highgui.hpp"
 #include "opencv2/imgproc/imgproc.hpp"
 #include <iostream>
 #include <stdio.h>
 #include <stdlib.h>

 using namespace cv;
 using namespace std;

 Mat src; Mat src_gray;
 int thresh = 100;
 int max_thresh = 255;
 RNG rng(12345);

 /// Function header
 void thresh_callback(int, void* );

/** @function main */
int main( int argc, char** argv )
 {
   /// Load source image and convert it to gray
   src = imread( argv[1], 1 );

   /// Convert image to gray and blur it
   cvtColor( src, src_gray, CV_BGR2GRAY );
   blur( src_gray, src_gray, Size(3,3) );

   /// Create Window
   char* source_window = "Source";
   namedWindow( source_window, CV_WINDOW_AUTOSIZE );
   imshow( source_window, src );

   createTrackbar( " Threshold:", "Source", &thresh, max_thresh, thresh_callback );
   thresh_callback( 0, 0 );

   waitKey(0);
   return(0);
 }

 /** @function thresh_callback */
 void thresh_callback(int, void* )
 {
   Mat src_copy = src.clone();
   Mat threshold_output;
   vector<vector<Point> > contours;
   vector<Vec4i> hierarchy;

   /// Detect edges using Threshold
   threshold( src_gray, threshold_output, thresh, 255, THRESH_BINARY );

   /// Find contours
   findContours( threshold_output, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, Point(0, 0) );

   /// Find the convex hull object for each contour
   vector<vector<Point> >hull( contours.size() );
   // Int type hull
   vector<vector<int>> hullsI( contours.size() );
   // Convexity defects
   vector<vector<Vec4i>> defects( contours.size() );

   for( size_t i = 0; i < contours.size(); i++ )
   {  
	   convexHull( Mat(contours[i]), hull[i], false ); 
	   // find int type hull
	   convexHull( Mat(contours[i]), hullsI[i], false ); 
	   // get convexity defects
	   convexityDefects(Mat(contours[i]),hullsI[i], defects[i]);
   
   }

   /// Draw contours + hull results
   Mat drawing = Mat::zeros( threshold_output.size(), CV_8UC3 );
   for( size_t i = 0; i< contours.size(); i++ )
      {
        Scalar color = Scalar( rng.uniform(0, 255), rng.uniform(0,255), rng.uniform(0,255) );
        drawContours( drawing, contours, i, color, 1, 8, vector<Vec4i>(), 0, Point() );
        drawContours( drawing, hull, i, color, 1, 8, vector<Vec4i>(), 0, Point() );

		// draw defects
		size_t count = contours[i].size();
        std::cout<<"Count : "<<count<<std::endl;
        if( count < 300 )
            continue;

        vector<Vec4i>::iterator d =defects[i].begin();

        while( d!=defects[i].end() ) {
            Vec4i& v=(*d);
            //if(IndexOfBiggestContour == i)
			{

                int startidx=v[0]; 
                Point ptStart( contours[i][startidx] ); // point of the contour where the defect begins
                int endidx=v[1]; 
                Point ptEnd( contours[i][endidx] ); // point of the contour where the defect ends
                int faridx=v[2]; 
                Point ptFar( contours[i][faridx] );// the farthest from the convex hull point within the defect
                int depth = v[3] / 256; // distance between the farthest point and the convex hull

                if(depth > 20 && depth < 80)
                {
                line( drawing, ptStart, ptFar, CV_RGB(0,255,0), 2 );
                line( drawing, ptEnd, ptFar, CV_RGB(0,255,0), 2 );
				circle( drawing, ptStart,   4, Scalar(255,0,100), 2 );
				circle( drawing, ptEnd,   4, Scalar(255,0,100), 2 );
                circle( drawing, ptFar,   4, Scalar(100,0,255), 2 );
                }

				/*printf("start(%d,%d) end(%d,%d), far(%d,%d)\\n",
					ptStart.x, ptStart.y, ptEnd.x, ptEnd.y, ptFar.x, ptFar.y);*/
            }
            d++;
        }


      }

   /// Show in a window
   namedWindow( "Hull demo", CV_WINDOW_AUTOSIZE );
   imshow( "Hull demo", drawing );
   //imwrite("convexity_defects.jpg", drawing);
 }

  另一个版本的说法

   首先介绍今天主角:void convexityDefects(InputArray contour, InputArray、convexhull, OutputArray convexityDefects)   

 使用时注意,最后一个参数 convexityDefects 是存储 Vec4i 的向量(vector<varname>),函数计算成功后向量的大小是轮廓凸缺陷的数量,向量每个元素Vec4i存储了4个整型数据,因为Vec4i对[]实现了重载,所以可以使用 _vectername[i][0] 来访问向量 _vactername的第i个元素的第一个分量。再说 Vec4i 中存储的四个整形数据,

Opencv 使用这四个元素表示凸缺陷,

第一个名字叫做  
start_index
,表示缺陷在轮廓上的开始处,他的值是开始点在函数第一个参数 contour 中的下标索引;

Vec4i 第二个元素的名字叫
end_index, 顾名思义其对应的值就是缺陷结束处在 contour 中的下标索引;

Vec4i 第三个元素 
farthest_pt_index
 是缺陷上距离 轮廓凸包(convexhull)最远的点;

Vec4i最后的元素叫
fixpt_depthfixpt_depth/256  表示了
轮廓上以 farthest_pt_index 为下标的点到 轮廓凸包的(convexhull)的距离,以像素为单位。

     All is so easy!下面就是简单的代码示例(首先计算两个轮廓的凸包,然后计算两个轮廓的凸缺陷):

// 计算凸缺陷 convexityDefect
//

#include "stdafx.h"
#include <opencv.hpp>
#include <iostream>

using namespace std;
using namespace cv;

int _tmain(int argc, _TCHAR* argv[])
{
	Mat *img_01 = new Mat(400, 400, CV_8UC3);
	Mat *img_02 = new Mat(400, 400, CV_8UC3);
	*img_01 = Scalar::all(0);
	*img_02 = Scalar::all(0);
	// 轮廓点组成的数组
	vector<Point> points_01,points_02;


	// 给轮廓组赋值
	points_01.push_back(Point(10, 10));points_01.push_back(Point(10,390));
	points_01.push_back(Point(390, 390));points_01.push_back(Point(150, 250));
	points_02.push_back(Point(10, 10));points_02.push_back(Point(10,390));
	points_02.push_back(Point(390, 390));points_02.push_back(Point(250, 150));

	vector<int> hull_01,hull_02;
	// 计算凸包
	convexHull(points_01, hull_01, true);
	convexHull(points_02, hull_02, true);

	// 绘制轮廓
	for(int i=0;i < 4;++i)
	{
		circle(*img_01, points_01[i], 3, Scalar(0,255,255), CV_FILLED, CV_AA);
		circle(*img_02, points_02[i], 3, Scalar(0,255,255), CV_FILLED, CV_AA);
	}
	// 绘制凸包轮廓
	CvPoint poi_01 = points_01[hull_01[hull_01.size()-1]];
	for(int i=0;i < hull_01.size();++i)
	{
		line(*img_01, poi_01, points_01[i], Scalar(255,255,0), 1, CV_AA);
		poi_01 = points_01[i];
	}
	CvPoint poi_02 = points_02[hull_02[hull_02.size()-1]];
	for(int i=0;i < hull_02.size();++i)
	{
		line(*img_02, poi_02, points_02[i], Scalar(255,255,0), 1, CV_AA);
		poi_02 = points_02[i];
	}
	
	vector<Vec4i> defects;
	// 如果有凸缺陷就把它画出来
	if( isContourConvex(points_01) )
	{
		cout<<"img_01的轮廓是凸包"<<endl;
	}else{
		cout<<"img_01的轮廓不是凸包"<<endl;
		convexityDefects(
			points_01,
			Mat(hull_01),
			defects
			);
		// 绘制缺陷
		cout<<"共"<<defects.size()<<"处缺陷"<<endl;
		for(int i=0;i < defects.size();++i)
		{
			circle(*img_01, points_01[defects[i][0]], 6, Scalar(255,0,0), 2, CV_AA);
			circle(*img_01, points_01[defects[i][1]], 6, Scalar(255,0,0), 2, CV_AA);
			circle(*img_01, points_01[defects[i][2]], 6, Scalar(255,0,0), 2, CV_AA);
			line(*img_01, points_01[defects[i][0]], points_01[defects[i][1]], Scalar(255,0,0), 1, CV_AA);
			line(*img_01, points_01[defects[i][1]], points_01[defects[i][2]], Scalar(255,0,0), 1, CV_AA);
			line(*img_01, points_01[defects[i][2]], points_01[defects[i][0]], Scalar(255,0,0), 1, CV_AA);
			cout<<"第"<<i<<"缺陷<"<<points_01[defects[i][0]].x<<","<<points_01[defects[i][0]].y
				<<">,<"<<points_01[defects[i][1]].x<<","<<points_01[defects[i][1]].y
				<<">,<"<<points_01[defects[i][2]].x<<","<<points_01[defects[i][2]].y<<">到轮廓的距离为:"<<defects[i][3]/256<<"px"<<endl;
		}
		defects.clear();
	}
	if( isContourConvex( points_02 ) )
	{
		cout<<"img_02的轮廓是凸包"<<endl;
	}else{
		cout<<"img_02的轮廓不是凸包"<<endl;
		vector<Vec4i> defects;
		convexityDefects(
			points_01,
			Mat(hull_01),
			defects
			);
		// 绘制出缺陷的轮廓
		for(int i=0;i < defects.size();++i)
		{
			circle(*img_02, points_01[defects[i][0]], 6, Scalar(255,0,0), 2, CV_AA);
			circle(*img_02, points_01[defects[i][1]], 6, Scalar(255,0,0), 2, CV_AA);
			circle(*img_02, points_01[defects[i][2]], 6, Scalar(255,0,0), 2, CV_AA);
			line(*img_02, points_01[defects[i][0]], points_01[defects[i][1]], Scalar(255,0,0), 1, CV_AA);
			line(*img_02, points_01[defects[i][1]], points_01[defects[i][2]], Scalar(255,0,0), 1, CV_AA);
			line(*img_02, points_01[defects[i][2]], points_01[defects[i][0]], Scalar(255,0,0), 1, CV_AA);
			// 因为 img_02 没有缺陷所以就懒的写那些输出代码了
		}
		defects.clear();
	}

	imshow("img_01 的轮廓和凸包:", *img_01);
	imshow("img_02 的轮廓和凸包:", *img_02);
	cvWaitKey();
	
	return 0;
}

  

以上是关于opencv使用convexityDefects计算轮廓凸缺陷的主要内容,如果未能解决你的问题,请参考以下文章

opencv 9 -- 轮廓 其他操作

使用 OpenCV 凸包和凸缺陷函数的手指跟踪/计数

使用 Qt Gui 执行慢速实时视频源的 Opencv 人脸检测

OpenCV——HOG特征检测

基于OpenCV的数据可视化

Java基于opencv—矫正图像