文本分类——NaiveBayes

Posted 小江_xiaojiang

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了文本分类——NaiveBayes相关的知识,希望对你有一定的参考价值。

前面文章已经介绍了朴素贝叶斯算法的原理,这里基于NavieBayes算法对newsgroup文本进行分类测试。

文中代码参考:http://blog.csdn.net/jiangliqing1234/article/details/39642757

主要内容如下:

1、newsgroup数据集介绍

数据下载地址:http://download.csdn.net/detail/hjy321686/8057761。  文本中包含20个不同的新闻组,除其中少数文本属于多个新闻组以外,其余的文档都只属于一个新闻组。

2、newsgroup数据预处理

要对文本进行分类,首先要对其进行预处理,预处理主要过程如下:

step1:英文词法分析,取出数字、连字符、标点符号、特殊字符,所有大写字母转换成小写,可用正则表达式:String res[] = line.split("[^a-zA-Z]");

step2:去停用词,过滤对别无价值的词

step3:词根还原stemmer,基于Porter算法

预处理类如下:

package com.datamine.NaiveBayes;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.FileWriter;
import java.util.ArrayList;

/**
 * Newsgroup文档预处理
 * step1:英文词法分析,取出数字、连字符、标点符号、特殊字符,所有大写字母转换成小写,可用正则表达式:String res[] = line.split("[^a-zA-Z]");
 * step2:去停用词,过滤对分类无价值的词
 * step3:词根还原stemmer,基于Porter算法
 * @author Administrator
 *
 */
public class DataPreProcess {

	private static ArrayList<String> stopWordsArray = new ArrayList<String>();
	
	/**
	 * 输入文件的路径,处理数据
	 * @param srcDir 文件目录的绝对路径
	 * @param desDir 清洗后的文件路径
	 * @throws Exception
	 */
	public void doProcess(String srcDir) throws Exception{
		
		File fileDir = new File(srcDir);
		if(!fileDir.exists()){
			System.out.println("文件不存在!");
			return ;
		}
		
		String subStrDir = srcDir.substring(srcDir.lastIndexOf('/'));
		String dirTarget = srcDir+"/../../processedSample"+subStrDir;
		File fileTarget = new File(dirTarget);
		
		if(!fileTarget.exists()){
			//注意processedSample需要先建立目录建出来,否则会报错,因为母目录不存在
			boolean mkdir = fileTarget.mkdir();
		}
		
		File[] srcFiles = fileDir.listFiles();
		
		for(int i =0 ;i <srcFiles.length;i++){
			
			String fileFullName = srcFiles[i].getCanonicalPath(); //CanonicalPath不但是全路径,而且把..或者.这样的符号解析出来。
			String fileShortName = srcFiles[i].getName(); //文件名
			
			if(!new File(fileFullName).isDirectory()){ //确认子文件名不是目录,如果是可以再次递归调用
				System.out.println("开始预处理:"+fileFullName);
				StringBuilder stringBuilder = new StringBuilder();
				stringBuilder.append(dirTarget+"/"+fileShortName);
				
				createProcessFile(fileFullName,stringBuilder.toString());
				
			}else{
				fileFullName = fileFullName.replace("\\\\", "/");
				doProcess(fileFullName);
			}
		}
	}
	
	/**
	 * 进行文本预处理生成目标文件
	 * @param srcDir 源文件文件目录的绝对路径
	 * @param targetDir 生成目标文件的绝对路径
	 * @throws Exception 
	 */
	private void createProcessFile(String srcDir, String targetDir) throws Exception {
		
		FileReader srcFileReader = new FileReader(srcDir);
		FileWriter targetFileWriter = new FileWriter(targetDir);
		BufferedReader srcFileBR = new BufferedReader(srcFileReader);
		String line,resLine;
		
		while((line = srcFileBR.readLine()) != null){
			resLine = lineProcess(line);
			if(!resLine.isEmpty()){
				//按行写,一行写一个单词
				String[] tempStr = resLine.split(" ");
				for(int i =0; i<tempStr.length ;i++){
					if(!tempStr[i].isEmpty())
						targetFileWriter.append(tempStr[i]+"\\n");
				}
			}
		}
		
		targetFileWriter.flush();
		targetFileWriter.close();
		srcFileReader.close();
		srcFileBR.close();
		
	}

	/**
	 * 对每行字符串进行处理,主要是词法分析、去停用词和stemming(去除时态)
	 * @param line 待处理的一行字符串
	 * @param stopWordsArray 停用词数组
	 * @return String 处理好的一行字符串,是由处理好的单词重新生成,以空格为分隔符
	 */
	private String lineProcess(String line) {
		
		/*
		 * step1 
		 * 英文词法分析,去除数字、连字符、标点符号、特殊字符,
		 * 所有大写字符转换成小写,可以考虑使用正则表达式
		 */
		String res[] = line.split("[^a-zA-Z]");
		
		//step2 去停用词,大写转换成小写 
		//step3 Stemmer.run()
		String resString = new String();
		
		for(int i=0;i<res.length;i++){
			if(!res[i].isEmpty() && !stopWordsArray.contains(res[i].toLowerCase()))
				resString += " " + Stemmer.run(res[i].toLowerCase()) + " ";
		}
		
		return resString;
	}

	/**
	 * 用stopWordsArray构造停用词的ArrayList容器
	 * @param stopwordsPath
	 * @throws Exception 
	 */
	private static void stopWordsToArray(String stopwordsPath) throws Exception {
		
		FileReader stopWordsReader = new FileReader(stopwordsPath);
		BufferedReader stopWordsBR = new BufferedReader(stopWordsReader);
		String stopWordsLine = null;
		
		//用stopWordsArray构造停用词的ArrayList容器
		while((stopWordsLine = stopWordsBR.readLine()) != null){
			if(!stopWordsLine.isEmpty())
				stopWordsArray.add(stopWordsLine);
		}
		
		stopWordsReader.close();
		stopWordsBR.close();
	}
	
	public static void main(String[] args) throws Exception{
		
		DataPreProcess dataPrePro = new DataPreProcess();
		String srcDir = "E:/DataMiningSample/orginSample";
		
		String stopwordsPath = "E:/DataMiningSample/stopwords.txt";
		
		stopWordsToArray(stopwordsPath);
		
		dataPrePro.doProcess(srcDir);
	}

	
}

对于step3中的Porter算法可以网上下载,这里我基于其之上添加了一个run()方法。

	/**
	 * Stemmer中接口,将传入的word进行词根还原
	 * @param word 传入单词
	 * @return result 处理后的单词
	 */
	public static String run(String word){
		
		Stemmer s = new Stemmer();
		
		char[] ch = word.toCharArray();
		
		for (int c = 0; c < ch.length; c++)
			s.add(ch[c]);
		
		s.stem();
		{
			String u;
			u = s.toString();
			//System.out.print(u);
			return u;
		}
		
	}

3、特征项选择

方法一:保留所有词作为特征词

方法二:选取出现频率大于某一个数(3或者其他)的词作为特征词

方法三:计算每个词的权重tf*idf,根据权重来选取特征词

本文中选取方法二。

4、文本向量化

由于本文中,特征词选择采用的是方法二,可以不用对文本进行向量化,但是统计特征词出现的次数方法写在ComputeWordsVector类中,为了程序运行这里还是把文本向量化的代码贴出来。后面使用KNN算法的时候也是要用到此类的。

package com.datamine.NaiveBayes;

import java.io.*;
import java.util.*;

/**
 * 计算文档的属性向量,将所有文档向量化
 * @author Administrator
 */
public class ComputeWordsVector {

	/**
	 * 计算文档的TF属性向量,TFPerDocMap
	 * 计算TF*IDF
	 * @param strDir 处理好的newsgroup文件目录的绝对路径
	 * @param trainSamplePercent 训练样本集占每个类目的比例
	 * @param indexOfSample 测试样例集的起始的测试样例编号      注释:通过这个参数可以将文本分成训练和测试两部分
	 * @param iDFPerWordMap  每个词的IDF权值属性向量
	 * @param wordMap 属性词典map
	 * @throws IOException 
	 */
	public void computeTFMultiIDF(String strDir,double trainSamplePercent,int indexOfSample,
			Map<String, Double> iDFPerWordMap,Map<String,Double> wordMap) throws IOException{
		
		File fileDir = new File(strDir);
		String word;
		SortedMap<String,Double> TFPerDocMap = new TreeMap<String, Double>();
		//注意可以用两个写文件,一个专门写测试样例,一个专门写训练样例,用sampleType的值来表示
		String trainFileDir = "E:/DataMiningSample/docVector/wordTFIDFMapTrainSample"+indexOfSample;
		String testFileDir = "E:/DataMiningSample/docVector/wordTFIDFMapTestSample"+indexOfSample;
		
		FileWriter tsTrainWriter = new FileWriter(new File(trainFileDir)); //往训练文件中写
		FileWriter tsTestWriter = new FileWriter(new File(testFileDir)); //往测试文件中写
		
		FileWriter tsWriter = null;
		File[] sampleDir = fileDir.listFiles();
		
		for(int i = 0;i<sampleDir.length;i++){
			
			String cateShortName = sampleDir[i].getName();
			System.out.println("开始计算: " + cateShortName);
			
			File[] sample = sampleDir[i].listFiles();
			//测试样例集起始文件序号
			double testBeginIndex = indexOfSample*(sample.length*(1-trainSamplePercent));
			//测试样例集的结束文件序号
			double testEndIndex = (indexOfSample+1)*(sample.length*(1-trainSamplePercent));
			System.out.println("文件名_文件数 :" + sampleDir[i].getCanonicalPath()+"_"+sample.length);
			System.out.println("训练数:"+sample.length*trainSamplePercent
					+ " 测试文本开始下标:"+ testBeginIndex+" 测试文本结束下标:"+testEndIndex);
			
			for(int j =0;j<sample.length; j++){
				
				//计算TF,即每个词在该文件中出现的频率
				TFPerDocMap.clear();
				FileReader samReader = new FileReader(sample[j]);
				BufferedReader samBR = new BufferedReader(samReader);
				String fileShortName = sample[j].getName();
				Double wordSumPerDoc = 0.0;//计算每篇文档的总字数
				while((word = samBR.readLine()) != null){
					
					if(!word.isEmpty() && wordMap.containsKey(word)){
						wordSumPerDoc++;
						if(TFPerDocMap.containsKey(word))
							TFPerDocMap.put(word, TFPerDocMap.get(word)+1);
						else
							TFPerDocMap.put(word, 1.0);
					}
				}
				samBR.close();
				
				/*
				 * 遍历 TFPerDocMap,除以文档的总词数wordSumPerDoc 则得到TF
				 * TF*IDF得到最终的特征权值,并输出到文件
				 * 注意:测试样例和训练样例写入的文件不同
				 */
				if(j >= testBeginIndex && j <= testEndIndex)
					tsWriter = tsTestWriter;
				else
					tsWriter = tsTrainWriter;
				
				Double wordWeight;
				Set<Map.Entry<String, Double>> tempTF = TFPerDocMap.entrySet();
				for(Iterator<Map.Entry<String, Double>> mt = tempTF.iterator();mt.hasNext();){
					
					Map.Entry<String, Double> me = mt.next();
					
					//由于计算IDF非常耗时,3万多个词的属性词典初步估计需要25个小时,先尝试认为所有词的IDF都是1的情况
					//wordWeight = (me.getValue() / wordSumPerDoc) * iDFPerWordMap.get(me.getKey());
					wordWeight = (me.getValue() / wordSumPerDoc) * 1.0;
					TFPerDocMap.put(me.getKey(), wordWeight);
				}
				
				tsWriter.append(cateShortName + " ");
				tsWriter.append(fileShortName + " ");
				Set<Map.Entry<String, Double>> tempTF2 = TFPerDocMap.entrySet();
				for(Iterator<Map.Entry<String, Double>> mt = tempTF2.iterator();mt.hasNext();){
					Map.Entry<String, Double> me = mt.next();
					tsWriter.append(me.getKey() + " " + me.getValue()+" ");
				}
				tsWriter.append("\\n");
				tsWriter.flush();
				
			}
		}
		tsTrainWriter.close();
		tsTestWriter.close();
		tsWriter.close();
	}
	
	/**
	 * 统计每个词的总出现次数,返回出现次数大于3词的词汇构成最终的属性词典
	 * @param strDir 处理好的newsgroup文件目录的绝对路径
	 * @param wordMap 记录出现的每个词构成的属性词典
	 * @return newWordMap 返回出现次数大于3次的词汇构成最终的属性词典
	 * @throws IOException
	 */
	public SortedMap<String, Double> countWords(String strDir,
			Map<String, Double> wordMap) throws IOException {
		
		File sampleFile = new File(strDir);
		File[] sample = sampleFile.listFiles();
		String word;
		
		for(int i =0 ;i < sample.length;i++){
			
			if(!sample[i].isDirectory()){
				FileReader samReader = new FileReader(sample[i]);
				BufferedReader samBR = new BufferedReader(samReader);
				while((word = samBR.readLine()) != null){
					if(!word.isEmpty() && wordMap.containsKey(word))
						wordMap.put(word, wordMap.get(word)+1);
					else
						wordMap.put(word, 1.0);
				}
				samBR.close();
			}else{
				countWords(sample[i].getCanonicalPath(),wordMap);
			}
		}
		
		/*
		 * 只返回出现次数大于3的单词
		 * 这里为了简单,应该独立一个函数,避免多次运行
		 */
		SortedMap<String,Double> newWordMap = new TreeMap<String, Double>();
		Set<Map.Entry<String, Double>> allWords = wordMap.entrySet();
		for(Iterator<Map.Entry<String, Double>> it = allWords.iterator();it.hasNext();){
			Map.Entry<String, Double> me = it.next();
			if(me.getValue() > 2)
				newWordMap.put(me.getKey(), me.getValue());
		}
		
		System.out.println("newWordMap "+ newWordMap.size());
		
		return newWordMap;
	}
	
	/**
	 * 打印属性词典,到allDicWordCountMap.txt中
	 * @param wordMap 属性词典
	 * @throws IOException 
	 */
	public void printWordMap(Map<String, Double> wordMap) throws IOException{
		
		System.out.println("printWordMap:");
		int countLine = 0;
		File outPutFile = new File("E:/DataMiningSample/docVector/allDicWordCountMap.txt");
		FileWriter outPutFileWriter = new FileWriter(outPutFile);
		
		Set<Map.Entry<String, Double>> allWords = wordMap.entrySet();
		for(Iterator<Map.Entry<String, Double>> it = allWords.iterator();it.hasNext();){
			Map.Entry<String, Double> me = it.next();
			outPutFileWriter.write(me.getKey()+" "+me.getValue()+"\\n");
			countLine++;
		}
		outPutFileWriter.close();
		System.out.println("WordMap size : " + countLine);
	}
	
	/**
	 * 词w在整个文档集合中的逆向文档频率idf (Inverse Document Frequency),
	 * 即文档总数n与词w所出现文件数docs(w, D)比值的对数: idf = log(n / docs(w, D))
	 * 计算IDF,即属性词典中每个词在多少个文档中出现过
	 * @param strDir 处理好的newsgroup文件目录的绝对路径
	 * @param wordMap 属性词典
	 * @return 单词的IDFMap
	 * @throws IOException 
	 */
	public SortedMap<String,Double> computeIDF(String strDir,Map<String, Double> wordMap) throws IOException{
		
		File fileDir = new File(strDir);
		String word;
		SortedMap<String,Double> IDFPerWordMap = new TreeMap<String, Double>();
		Set<Map.Entry<String, Double>> wordMapSet = wordMap.entrySet();
		
		for(Iterator<Map.Entry<String, Double>> it = wordMapSet.iterator();it.hasNext();){
			Map.Entry<String, Double> pe = it.next();
			Double countDoc = 0.0; //出现字典词的文本数
			Double sumDoc = 0.0; //文本总数
			String dicWord = pe.getKey();
			File[] sampleDir = fileDir.listFiles();
			
			for(int i =0;i<sampleDir.length;i++){
				
				File[] sample = sampleDir[i].listFiles();
				for(int j = 0;j<sample.length;j++){
					
					sumDoc++; //统计文本数
					
					FileReader samReader = new FileReader(sample[j]);
					BufferedReader samBR = new BufferedReader(samReader);
					boolean isExist = false;
					while((word = samBR.readLine()) != null){
						if(!word.isEmpty() && word.equals(dicWord)){
							isExist = true;
							break;
						}
					}
					if(isExist)
						countDoc++;
					
					samBR.close();
				}
			}
			//计算单词的IDF
			//double IDF = Math.log(sumDoc / countDoc) / Math.log(10);
			double IDF = Math.log(sumDoc / countDoc);
			IDFPerWordMap.put(dicWord, IDF);
		}
		return IDFPerWordMap;
	}
	
	
	
	public static void main(String[] args) throws IOException {
		
		ComputeWordsVector wordsVector = new ComputeWordsVector();
		
		String strDir = "E:\\\\DataMiningSample\\\\processedSample";
		Map<String, Double> wordMap = new TreeMap<String, Double>();
		
		//属性词典
		Map<String, Double> newWordMap = new TreeMap<String, Double>();
		
		newWordMap = wordsVector.countWords(strDir,wordMap);
		
		//wordsVector.printWordMap(newWordMap);
		//wordsVector.computeIDF(strDir, newWordMap);
		
		double trainSamplePercent = 0.8;
		int indexOfSample = 1;
		Map<String, Double> iDFPerWordMap = null;
		
		wordsVector.computeTFMultiIDF(strDir, trainSamplePercent, indexOfSample, iDFPerWordMap, newWordMap);
		
		//test();
	}
	
	public static void test(){
		
		double sumDoc  = 18828.0;
		double countDoc = 229.0;
		
		double IDF1 = Math.log(sumDoc / countDoc) / Math.log(10);
		double IDF2 = Math.log(sumDoc / countDoc) ;
		
		System.out.println(IDF1);
		System.out.println(IDF2);
		
		System.out.println(Math.log(10));
	}
	
}

5、对文本分为测试集和训练集

按指定的比例(0.9或者0.8)对整个文本进行划分,测试集和训练集

package com.datamine.NaiveBayes;

import java.io.*;
import java.util.*;


public class CreateTrainAndTestSample {

	
	void filterSpecialWords() throws IOException{
		
		String word;
		ComputeWordsVector cwv = new ComputeWordsVector();
		String fileDir = "E:\\\\DataMiningSample\\\\processedSample";
		SortedMap<String, Double> wordMap = new TreeMap<String, Double>();
		
		wordMap = cwv.countWords(fileDir, wordMap);
		cwv.printWordMap(wordMap); //把wordMap输出到文件
		
		File[] sampleDir = new File(fileDir).listFiles();
		for(int i = 0;i<sampleDir.length;i++){
			
			File[] sample = sampleDir[i].listFiles();
			String targetDir = "E:/DataMiningSample/processedSampleOnlySpecial/"+sampleDir[i].getName();
			File targetDirFile = new File(targetDir);
			if(!targetDirFile.exists()){
				targetDirFile.mkdir();
			}
			
			for(int j = 0; j<sample.length;j++){
				
				String fileShortName = sample[j].getName();
				targetDir = "E:/DataMiningSample/processedSampleOnlySpecial/"+sampleDir[i].getName()+"/"+fileShortName;
				FileWriter tgWriter = new FileWriter(targetDir);
				FileReader samReader = new FileReader(sample[j]);
				BufferedReader samBR = new BufferedReader(samReader);
				while((word = samBR.readLine()) != null){
					if(wordMap.containsKey(word))
						tgWriter.append(word+"\\n");
				}
				tgWriter.flush();
				tgWriter.close();
				samBR.close();
			}
		}
	}
	
	/**
	 * 创建训练集和测试集
	 * @param fileDir 预处理好的文件路径 E:\\DataMiningSample\\processedSampleOnlySpecial\\
	 * @param trainSamplePercent 训练集占的百分比0.8
	 * @param indexOfSample 一个测试集计算规则  1
	 * @param classifyResultFile 测试样例正确类目记录文件
	 * @throws IOException
	 */
	void createTestSample(String fileDir,double trainSamplePercent,int indexOfSample,String classifyResultFile) throws IOException{
		
		String word,targetDir;
		FileWriter crWriter = new FileWriter(classifyResultFile);//测试样例正确类目记录文件
		File[] sampleDir = new File(fileDir).listFiles();
		
		for(int i =0;i<sampleDir.length;i++){
			
			File[] sample = sampleDir[i].listFiles();
			double testBeginIndex = indexOfSample*(sample.length*(1-trainSamplePercent));
			double testEndIndex = (indexOfSample + 1)*(sample.length*(1-trainSamplePercent));
			
			for(int j = 0;j<sample.length;j++){
				
				FileReader samReader = new FileReader(sample[j]);
				BufferedReader samBR = new BufferedReader(samReader);
				String fileShortName = sample[j].getName();
				String subFileName = fileShortName;
				
				if(j > testBeginIndex && j < testEndIndex){
					targetDir = "E:/DataMiningSample/TestSample"+indexOfSample+"/"+sampleDir[i].getName(); 
					crWriter.append(subFileName + " "+sampleDir[i].getName()+"\\n");
				}else{
					targetDir = "E:/DataMiningSample/TrainSample"+indexOfSample+"/"+sampleDir[i].getName();
				}
					
				targetDir = targetDir.replace("\\\\", "/");
				File trainSamFile = new File(targetDir);
				if(!trainSamFile.exists()){
					trainSamFile.mkdir();
				}
				
				targetDir += "/" + subFileName;
				FileWriter tsWriter = new FileWriter(new File(targetDir));
				while((word = samBR.readLine()) != null)
					tsWriter.append(word+"\\n");
				tsWriter.flush();
				
				tsWriter.close();
				samBR.close();
			}
			
		}
		crWriter.close();
	}
	
	
	public static void main(String[] args) throws IOException {
		
		CreateTrainAndTestSample test = new CreateTrainAndTestSample();
		
		String fileDir = "E:/DataMiningSample/processedSampleOnlySpecial";
		double trainSamplePercent=0.8;
		int indexOfSample=1;
		String classifyResultFile="E:/DataMiningSample/classifyResult";
		
		test.createTestSample(fileDir, trainSamplePercent, indexOfSample, classifyResultFile);
		//test.filterSpecialWords();
	}
	
	
}

6、朴素贝叶斯算法描述和实现

根据朴素贝叶斯公式,每个测试样例属于某个类别的概率 =  所有测试样例包含特征词类条件概率P(tk|c)之积 * 先验概率P(c)

以上是关于文本分类——NaiveBayes的主要内容,如果未能解决你的问题,请参考以下文章

NLP之文本分类

词袋模型(新闻文本分类)

中文文本分类大概的步骤

文本清洗+文本分类

文本分类与句子分类[重复]

搜索引擎文本分类