[OJ#63]树句节够提

Posted xjr_01

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[OJ#63]树句节够提相关的知识,希望对你有一定的参考价值。

[OJ#63]树句节够提

试题描述

给定一棵节点数为 N 的有根树,其中 1 号点是根节点,除此之外第 i 个节点的父亲为 fi。每个节点有一个权值 Ai,所有边权均为 1

给定 Q 个询问,每个询问以一个二元组 (x,k) 的形式给出,表示询问以 x 为根的子树内,与 x 距离至少为 k 的所有节点权值之和。

由于输出量可能过大,我们使用以下方式减少输出量。

void print(int q, long long* ans, int lim) {
    for(int i = 1; i <= q; ) {
        long long res = 0;
        for(int j = i; j <= min(q, i + lim - 1); j++) res ^= ans[j];
        i += lim;
        printf("%lld\n", res);
    } 
}

程序中 ansi 表示第 i 次询问的答案,你需要在你的程序末尾调用以上函数来输出答案。

输入

第一行为一个正整数 N

第二行为 N 个正整数 Ai

第三行为 N?1 个正整数 fi,第 i 个正整数表示 i+1 的父亲节点。

第四行为一个正整数 Q

接下来 Q 行每行两个整数 xk

最后一行为一个正整数 lim

输出

在你的程序末尾调用以上函数来输出答案。

输入示例

7
1 2 3 4 5 6 7
1 1 2 2 3 3
5
2 0
2 1
6 1
6 0
1 1
1

输出示例

11
9
0
6
27

数据规模及约定

对于 20% 的数据,1N,Q2501

对于 70% 的数据,1N,Q252501

对于 100% 的数据,1N,Q25250101Ai525011fii?11x,k+1,limN

保证单个输出文件大小不超过 0.5MB,但如果你需要使用Hack功能,请保证Max(1,floor(N/10000))lim

题解

注意:此题标算 O(n)。

长链剖分“新”用法?(就好像之前写过长链剖分的题一样。。。)

先离线,将所有询问放入树上对应节点,然后给树进行长链剖分(其实长链剖分主要目的是将“长链”放到区间的连续一段)。然后在处理询问时,因为对于一个子树 x,深度一样的节点地位一样,所以可以将子树的信息全都“压缩”到长链上,由于长链是这个子树 x 中一端在 x 上的最长链,所以能够保证所有的节点都有地方存。

由于一条长链对应一段连续区间,在询问某个深度的时候就可以 O(1) 用数组查询了。

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <algorithm>
using namespace std;

int read() {
	int x = 0, f = 1; char c = getchar();
	while(!isdigit(c)){ if(c == ‘-‘) f = -1; c = getchar(); }
	while(isdigit(c)){ x = x * 10 + c - ‘0‘; c = getchar(); }
	return x * f;
}

#define maxn 2525020
#define LL long long

int n, q, fa[maxn], m, head[maxn], nxt[maxn], to[maxn], A[maxn];

void AddEdge(int a, int b) {
	to[++m] = b; nxt[m] = head[a]; head[a] = m;
	return ;
}

int dep[maxn], mxd[maxn], son[maxn], pos[maxn], clo;
void build(int u) {
	mxd[u] = dep[u];
	for(int e = head[u]; e; e = nxt[e]) {
		dep[to[e]] = dep[u] + 1;
		build(to[e]);
		mxd[u] = max(mxd[u], mxd[to[e]]);
		if(!son[u] || mxd[to[e]] > mxd[son[u]]) son[u] = to[e];
	}
	return ;
}
void gett(int u) {
	pos[u] = ++clo;
	if(son[u]) gett(son[u]);
	for(int e = head[u]; e; e = nxt[e]) if(to[e] != son[u]) gett(to[e]);
	return ;
}

struct Que {
	int head[maxn], nxt[maxn], dep[maxn];
	Que() { memset(head, 0, sizeof(head)); }
	void Insert(int u, int d, int id) {
		dep[id] = d; nxt[id] = head[u]; head[u] = id;
		return ;
	}
} que;
LL sum[maxn], Ans[maxn];
void solve(int u) {
	if(son[u]) solve(son[u]);
	for(int e = head[u]; e; e = nxt[e]) if(to[e] != son[u]) {
		solve(to[e]);
		for(int i = 0; i <= mxd[to[e]] - dep[to[e]]; i++)
			sum[pos[u]+1+i] += sum[pos[to[e]]+i];
	}
	sum[pos[u]] = (son[u] ? sum[pos[son[u]]] : 0) + A[u];
	for(int e = que.head[u]; e; e = que.nxt[e])
		Ans[e] = (que.dep[e] <= mxd[u] - dep[u]) ? sum[pos[u]+que.dep[e]] : 0;
	return ;
}

void print(int q, int lim) {
    for(int i = 1; i <= q; ) {
        long long res = 0;
        for(int j = i; j <= min(q, i + lim - 1); j++) res ^= Ans[j];
        i += lim;
        printf("%lld\n", res);
    }
    return ;
}

int main() {
	n = read();
	for(int i = 1; i <= n; i++) A[i] = read();
	for(int i = 2; i <= n; i++) {
		fa[i] = read();
		AddEdge(fa[i], i);
	}
	
	build(1);
	gett(1);
	
	q = read();
	for(int i = 1; i <= q; i++) {
		int x = read(), d = read();
		que.Insert(x, d, i);
	}
	solve(1);
	
	print(q, read());
	
	return 0;
}

然而这题我写的 O(nlogn) 的算法比上面的 O(n) 要快 233333

注意不能直接强上主席树,因为空间不够。

考虑到每个询问就是问子树内深度大于等于某个值(k+dep[x],k 表示该询问的参数,dep[x] 表示该询问中节点 x 的深度,不妨称每个询问的 k+dep[x] 为它的绝对深度)的所有的点权和,所以我们将询问按它们的绝对深度从大到小排序,然后依次处理。那么问题变成每次添加一个点,然后询问区间和,可以用树状数组很快地实现。

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <algorithm>
using namespace std;

const int BufferSize = 1 << 16;
char buffer[BufferSize], *Head, *Tail;
inline char Getchar() {
	if(Head == Tail) {
		int l = fread(buffer, 1, BufferSize, stdin);
		Tail = (Head = buffer) + l;
	}
	return *Head++;
}
int read() {
	int x = 0, f = 1; char c = Getchar();
	while(!isdigit(c)){ if(c == ‘-‘) f = -1; c = Getchar(); }
	while(isdigit(c)){ x = x * 10 + c - ‘0‘; c = Getchar(); }
	return x * f;
}

#define maxn 2525020
#define LL long long

int n, q, fa[maxn], m, head[maxn], nxt[maxn], to[maxn], A[maxn];

void AddEdge(int a, int b) {
	to[++m] = b; nxt[m] = head[a]; head[a] = m;
	return ;
}

struct Level {
	int head[maxn], nxt[maxn];
	Level() { memset(head, 0, sizeof(head)); }
	void Insert(int u, int level) {
		nxt[u] = head[level];
		head[level] = u;
		return ;
	}
} lev;
int dep[maxn], dl[maxn], dr[maxn], clo;
void build(int u) {
	dl[u] = ++clo;
	lev.Insert(u, dep[u]);
	for(int e = head[u]; e; e = nxt[e]) {
		dep[to[e]] = dep[u] + 1;
		build(to[e]);
	}
	dr[u] = clo;
	return ;
}

struct Que {
	int u, d, id;
	Que() {}
	Que(int _1, int _2, int _3): u(_1), d(_2 + dep[u]), id(_3) {}
	bool operator < (const Que& t) const { return d < t.d; }
} qs[maxn];

LL C[maxn];
void add(int x, int v) {
	for(; x <= n; x += x & -x) C[x] += v;
	return ;
}
LL que(int x) {
	LL sum = 0;
	for(; x; x -= x & -x) sum += C[x];
	return sum;
}

LL Ans[maxn];

int num[100], cntn;
void putnum(LL x) {
	cntn = 0;
	while(x) num[cntn++] = x % 10, x /= 10;
	for(int i = cntn - 1; i >= 0; i--) putchar(num[i] + ‘0‘);
	if(!cntn) putchar(‘0‘);
	putchar(‘\n‘);
	return ;
}

void print(int q, int lim) {
    for(int i = 1; i <= q; ) {
        long long res = 0;
        for(int j = i; j <= min(q, i + lim - 1); j++) res ^= Ans[j];
        i += lim;
        putnum(res);
    }
    return ;
}

int main() {
	n = read();
	for(int i = 1; i <= n; i++) A[i] = read();
	for(int i = 2; i <= n; i++) {
		fa[i] = read();
		AddEdge(fa[i], i);
	}
	
	build(1);
	q = read();
	for(int i = 1; i <= q; i++) {
		int x = read(), k = read();
		qs[i] = Que(x, k, i);
	}
	sort(qs + 1, qs + q + 1);
	for(int i = q, j = n; i; i--) {
		while(j >= qs[i].d) {
			for(int e = lev.head[j]; e; e = lev.nxt[e]) add(dl[e], A[e]);
			j--;
		}
		Ans[qs[i].id] = que(dr[qs[i].u]) - que(dl[qs[i].u] - 1);
	}
	
	print(q, read());
	
	return 0;
}

此题略丧病。。。

以上是关于[OJ#63]树句节够提的主要内容,如果未能解决你的问题,请参考以下文章

东华大学OJ基础题63题疑问记录

LeetCode OJ 63. Unique Paths II

笔试题63. LeetCode OJ (50)

[LeedCode OJ]#63 Unique Paths II

&lt;LeetCode OJ&gt; 62. / 63. Unique Paths(I / II)

九度oj 题目1077:最大序列和