No_16_0325 Java基础学习第二十四天—多线程学习总结
Posted 鹿天斐
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了No_16_0325 Java基础学习第二十四天—多线程学习总结相关的知识,希望对你有一定的参考价值。
文档版本 | 开发工具 | 测试平台 | 工程名字 | 日期 | 作者 | 备注 |
---|---|---|---|---|---|---|
V1.0 | 2016.03.25 | lutianfei | none |
第十章 多线程
多线程概述
什么是进程?
- 进程:就是正在运行的程序。
- 进程是系统进行资源分配和调用的独立单位。每一个进程都有它自己的内存空间和系统资源。
多进程有什么意义呢?
- 可以在一个时间段内执行多个任务。
- 可以提高CPU的使用率。
什么是线程呢?
- 在同一个进程内又可以执行多个任务,而这每一个任务我就可以看出是一个
线程
。 线程
:是程序的执行单元,执行路径。是程序使用CPU的最基本单位。单线程
:如果程序只有一条执行路径。多线程
:如果程序有多条执行路径。
多线程有什么意义呢?
- 多线程的存在,不是提高程序的执行速度。其实是为了提高应用程序的使用率。
- 程序的执行其实都是在抢CPU的资源,CPU的执行权。
- 多个进程是在抢这个资源,而其中的某一个进程如果执行路径比较多,就会有更高的几率抢到CPU的执行权。
- 我们是不敢保证哪一个线程能够在哪个时刻抢到,所以线程的执行有随机性。
什么是并发呢?
- 大家注意两个词汇的区别:
并行
和并发
。 并行
是逻辑上同时发生,指在某一个时间内同时运行多个程序。并发
是物理上同时发生,指在某一个时间点同时运行多个程序。- 我们可以实现真正意义上的并发,例如:多个CPU就可以实现,不过得知道如何调度和控制它们。
Java程序运行原理
java 命令会启动 java 虚拟机,启动 JVM,等于启动了一个应用程序,也就是启动了一个进程。该进程会自动启动一个 “主线程” ,然后主线程去调用某个类的 main 方法。所以 main方法运行在主线程中。在此之前的所有程序都是单线程的。
思考:jvm虚拟机的启动是单线程的还是多线程的?
- JVM启动至少启动了垃圾回收线程和主线程,所以是多线程的。
如何实现多线程
- 由于线程是依赖进程而存在的,所以我们应该先创建一个进程出来。进程是由系统创建的,所以我们应该去调用系统功能创建一个进程。
- Java是不能直接调用系统功能的,所以,我们没有办法直接实现多线程程序。但是Java可以去调用C/C++写好的程序来实现多线程程序。
- 由C/C++去调用系统功能创建进程,然后由Java去调用这样的东西,然后提供一些类供我们使用。我们就可以实现多线程程序了。
多线程的实现方案1
- 方式1:继承Thread类。
步骤:
- A:自定义类MyThread继承Thread类。
- B:MyThread类里面重写run()
- C:创建对象
D:启动线程
- 面试题:run()和start()的区别?
- run():仅仅是封装被线程执行的代码,直接调用是普通方法
start():首先启动了线程,然后再由jvm去调用该线程的run()方法。
面试题:为什么重写run()方法?`
- 不是类中的所有代码都需要被线程执行的。为了区分哪些代码能够被线程执行,java提供了Thread类中的run()用来包含那些被线程执行的代码。
/*
* 需求:我们要实现多线程的程序。
*/
public class MyThreadDemo {
public static void main(String[] args) {
// 创建线程对象
// MyThread my = new MyThread();
// // 启动线程
// my.run();
// my.run();
// 调用run()方法为什么是单线程的呢?
// 因为run()方法直接调用其实就相当于普通的方法调用,所以你看到的是单线程的效果
// 要想看到多线程的效果,就必须说说另一个方法:start()
// 面试题:run()和start()的区别?
// run():仅仅是封装被线程执行的代码,直接调用是普通方法
// start():首先启动了线程,然后再由jvm去调用该线程的run()方法。
// MyThread my = new MyThread();
// my.start();
// // IllegalThreadStateException:非法的线程状态异常
// // 为什么呢?因为这个相当于是my线程被调用了两次。而不是两个线程启动。
// my.start();
// 创建两个线程对象
MyThread my1 = new MyThread();
MyThread my2 = new MyThread();
my1.start();
my2.start();
}
}
public class MyThread extends Thread {
@Override
public void run() {
// 自己写代码
// System.out.println("好好学习,天天向上");
// 一般来说,被线程执行的代码肯定是比较耗时的。所以我们用循环改进
for (int x = 0; x < 200; x++) {
System.out.println(x);
}
}
}
如何获取和设置线程名称
Thread类的基本获取和设置方法
- public final String getName():获取线程的名称。
- public final void setName(String name):设置线程的名称
- 通过构造方法也可以给线程起名字
思考:
- 如何获取main方法所在的线程名称呢?
- public static Thread currentThread()
- 这样就可以获取任意方法所在的线程名称
/*
* 针对不是Thread类的子类中如何获取线程对象名称呢?
* public static Thread currentThread():返回当前正在执行的线程对象
* Thread.currentThread().getName()
*/
public class MyThreadDemo {
public static void main(String[] args) {
// 创建线程对象
//无参构造+setXxx()
// MyThread my1 = new MyThread();
// MyThread my2 = new MyThread();
// //调用方法设置名称
// my1.setName("林青霞");
// my2.setName("刘意");
// my1.start();
// my2.start();
//带参构造方法给线程起名字
// MyThread my1 = new MyThread("林青霞");
// MyThread my2 = new MyThread("刘意");
// my1.start();
// my2.start();
//我要获取main方法所在的线程对象的名称,该怎么办呢?
//遇到这种情况,Thread类提供了一个很好玩的方法:
//public static Thread currentThread():返回当前正在执行的线程对象
System.out.println(Thread.currentThread().getName());
}
}
/*
名称为什么是:Thread-? 编号
class Thread {
private char name[];
public Thread() {
init(null, null, "Thread-" + nextThreadNum(), 0);
}
private void init(ThreadGroup g, Runnable target, String name,
long stackSize) {
init(g, target, name, stackSize, null);
}
private void init(ThreadGroup g, Runnable target, String name,
long stackSize, AccessControlContext acc) {
//大部分代码被省略了
this.name = name.toCharArray();
}
public final void setName(String name) {
this.name = name.toCharArray();
}
private static int threadInitNumber; //0,1,2
private static synchronized int nextThreadNum() {
return threadInitNumber++; //return 0,1
}
public final String getName() {
return String.valueOf(name);
}
}
class MyThread extends Thread {
public MyThread() {
super();
}
}
*/
public class MyThread extends Thread {
public MyThread() {
}
public MyThread(String name){
super(name);
}
@Override
public void run() {
for (int x = 0; x < 100; x++) {
System.out.println(getName() + ":" + x);
}
}
}
线程调度
- 假如我们的计算机只有一个 CPU,那么 CPU 在某一个时刻只能执行一条指令,线程只有得到CPU时间片,也就是使用权,才可以执行指令。那么Java是如何对线程进行调用的呢?
- 线程有两种调度模型:
分时调度模型
所有线程轮流使用 CPU 的使用权,平均分配每个线程占用 CPU 的时间片抢占式调度模型
优先让优先级高的线程使用 CPU,如果线程的优先级相同,那么会随机选择一个,优先级高的线程获取的 CPU 时间片相对多一些。- Java使用的是抢占式调度模型。
- public final int getPriority():返回线程对象的优先级
- public final void setPriority(int newPriority):更改线程的优
- 线程默认优先级是5。
- 线程优先级的范围是:1-10。
- 线程优先级高仅仅表示线程获取的 CPU时间片的几率高,但是要在次数比较多,或者多次运行的时候才能看到比较好的效果。
public class ThreadPriority extends Thread {
@Override
public void run() {
for (int x = 0; x < 100; x++) {
System.out.println(getName() + ":" + x);
}
}
}
/*
* 注意:
* IllegalArgumentException:非法参数异常。
* 抛出的异常表明向方法传递了一个不合法或不正确的参数。
*
*/
public class ThreadPriorityDemo {
public static void main(String[] args) {
ThreadPriority tp1 = new ThreadPriority();
ThreadPriority tp2 = new ThreadPriority();
ThreadPriority tp3 = new ThreadPriority();
tp1.setName("东方不败");
tp2.setName("岳不群");
tp3.setName("林平之");
// 获取默认优先级
// System.out.println(tp1.getPriority());
// System.out.println(tp2.getPriority());
// System.out.println(tp3.getPriority());
// 设置线程优先级
// tp1.setPriority(100000);
//设置正确的线程优先级
tp1.setPriority(10);
tp2.setPriority(1);
tp1.start();
tp2.start();
tp3.start();
}
}
线程控制
- 我们已经知道了线程的调度,接下来我们就可以使用如下方法对象线程进行控制
- 线程休眠
- public static void sleep(long millis)
- 线程加入
- public final void join()
- 线程礼让
- public static void yield()
- 后台线程
- public final void setDaemon(boolean on)
中断线程
- public final void stop()
- public void interrupt()
案例:线程休眠
public class ThreadSleep extends Thread {
@Override
public void run() {
for (int x = 0; x < 100; x++) {
System.out.println(getName() + ":" + x + ",日期:" + new Date());
// 睡眠
// 困了,我稍微休息1秒钟
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
/*
* 线程休眠
* public static void sleep(long millis)
*/
public class ThreadSleepDemo {
public static void main(String[] args) {
ThreadSleep ts1 = new ThreadSleep();
ThreadSleep ts2 = new ThreadSleep();
ThreadSleep ts3 = new ThreadSleep();
ts1.setName("林青霞");
ts2.setName("林志玲");
ts3.setName("林志颖");
ts1.start();
ts2.start();
ts3.start();
}
}
- 案例:线程加入
public class ThreadJoin extends Thread {
@Override
public void run() {
for (int x = 0; x < 100; x++) {
System.out.println(getName() + ":" + x);
}
}
}
/*
* public final void join():等待该线程终止。
*/
public class ThreadJoinDemo {
public static void main(String[] args) {
ThreadJoin tj1 = new ThreadJoin();
ThreadJoin tj2 = new ThreadJoin();
ThreadJoin tj3 = new ThreadJoin();
tj1.setName("李渊");
tj2.setName("李世民");
tj3.setName("李元霸");
tj1.start();
try {
tj1.join();
} catch (InterruptedException e) {
e.printStackTrace();
}
tj2.start();
tj3.start();
}
}
- 案例:线程礼让
public class ThreadYield extends Thread {
@Override
public void run() {
for (int x = 0; x < 100; x++) {
System.out.println(getName() + ":" + x);
Thread.yield();
}
}
}
/*
* public static void yield():暂停当前正在执行的线程对象,并执行其他线程。
* 让多个线程的执行更和谐,但是不能靠它保证一人一次。
*/
public class ThreadYieldDemo {
public static void main(String[] args) {
ThreadYield ty1 = new ThreadYield();
ThreadYield ty2 = new ThreadYield();
ty1.setName("林青霞");
ty2.setName("刘意");
ty1.start();
ty2.start();
}
}
- 案例:后台线程
public class ThreadDaemon extends Thread {
@Override
public void run() {
for (int x = 0; x < 100; x++) {
System.out.println(getName() + ":" + x);
}
}
}
/*
* public final void setDaemon(boolean on):将该线程标记为守护线程或用户线程。
* 当正在运行的线程都是守护线程时,Java 虚拟机退出。 该方法必须在启动线程前调用。
*
* 游戏:坦克大战。
*/
public class ThreadDaemonDemo {
public static void main(String[] args) {
ThreadDaemon td1 = new ThreadDaemon();
ThreadDaemon td2 = new ThreadDaemon();
td1.setName("关羽");
td2.setName("张飞");
// 设置收获线程
td1.setDaemon(true);
td2.setDaemon(true);
td1.start();
td2.start();
Thread.currentThread().setName("刘备");
for (int x = 0; x < 5; x++) {
System.out.println(Thread.currentThread().getName() + ":" + x);
}
}
}
- 案例:中断线程
public class ThreadStop extends Thread {
@Override
public void run() {
System.out.println("开始执行:" + new Date());
// 我要休息10秒钟,亲,不要打扰我哦
try {
Thread.sleep(10000);
} catch (InterruptedException e) {
// e.printStackTrace();
System.out.println("线程被终止了");
}
System.out.println("结束执行:" + new Date());
}
}
/*
* public final void stop():让线程停止,过时了,但是还可以使用。
* public void interrupt():中断线程。 把线程的状态终止,并抛出一个InterruptedException。
*/
public class ThreadStopDemo {
public static void main(String[] args) {
ThreadStop ts = new ThreadStop();
ts.start();
// 你超过三秒不醒过来,我就干死你
try {
Thread.sleep(3000);
// ts.stop();
ts.interrupt();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
线程的生命周期图
多线程的实现方案2
- 实现Runnable接口
- 步骤:
- A:自定义类MyRunnable实现Runnable接口
- B:重写run()方法
- C:创建MyRunnable类的对象
- D:创建Thread类的对象,并把C步骤的对象作为构造参数传递
- 步骤:
- 实现接口方式的好处
- 可以避免由于Java单继承带来的局限性。
- 适合多个相同程序的代码去处理同一个资源的情况,把线程同程序的代码,数据有效分离,较好的体现了面向对象的设计思想。
public class MyRunnable implements Runnable {
@Override
public void run() {
for (int x = 0; x < 100; x++) {
// 由于实现接口的方式就不能直接使用Thread类的方法了,但是可以间接的使用
System.out.println(Thread.currentThread().getName() + ":" + x);
}
}
}
/*
* 方式2:实现Runnable接口
*/
public class MyRunnableDemo {
public static void main(String[] args) {
// 创建MyRunnable类的对象
MyRunnable my = new MyRunnable();
// 创建Thread类的对象,并把C步骤的对象作为构造参数传递
// Thread(Runnable target)
// Thread t1 = new Thread(my);
// Thread t2 = new Thread(my);
// t1.setName("林青霞");
// t2.setName("刘意");
// Thread(Runnable target, String name)
Thread t1 = new Thread(my, "林青霞");
Thread t2 = new Thread(my, "刘意");
t1.start();
t2.start();
}
}
多线程程序练习
- 需求:
- 某电影院目前正在上映贺岁大片,共有100张票,而它有3个售票窗口售票,请设计一个程序模拟该电影院售票。
- 两种方式实现
- 继承Thread类
- 实现Runnable接口
- 方式一:
public class SellTicket extends Thread {
// 定义100张票
// private int tickets = 100;
// 为了让多个线程对象共享这100张票,我们其实应该用静态修饰
private static int tickets = 100;
@Override
public void run() {
// 定义100张票
// 每个线程进来都会走这里,这样的话,每个线程对象相当于买的是自己的那100张票,这不合理,所以应该定义到外面
// int tickets = 100;
// 是为了模拟一直有票
while (true) {
if (tickets > 0) {
System.out.println(getName() + "正在出售第" + (tickets--) + "张票");
}
}
}
}
/*
* 某电影院目前正在上映贺岁大片(红高粱,少林寺传奇藏经阁),共有100张票,而它有3个售票窗口售票,请设计一个程序模拟该电影院售票。
* 继承Thread类来实现。
*/
public class SellTicketDemo {
public static void main(String[] args) {
// 创建三个线程对象
SellTicket st1 = new SellTicket();
SellTicket st2 = new SellTicket();
SellTicket st3 = new SellTicket();
// 给线程对象起名字
st1.setName("窗口1");
st2.setName("窗口2");
st3.setName("窗口3");
// 启动线程
st1.start();
st2.start();
st3.start();
}
}
- 方式二:
public class SellTicket implements Runnable {
// 定义100张票
private int tickets = 100;
@Override
public void run() {
while (true) {
if (tickets > 0) {
System.out.println(Thread.currentThread().getName() + "正在出售第"
+ (tickets--) + "张票");
}
}
}
}
/*
* 实现Runnable接口的方式实现
*/
public class SellTicketDemo {
public static void main(String[] args) {
// 创建资源对象
SellTicket st = new SellTicket();
// 创建三个线程对象
Thread t1 = new Thread(st, "窗口1");
Thread t2 = new Thread(st, "窗口2");
Thread t3 = new Thread(st, "窗口3");
// 启动线程
t1.start();
t2.start();
t3.start();
}
}
关于电影院卖票程序的思考
- 我们前面讲解过电影院售票程序,从表面上看不出什么问题,但是在真实生活中,售票时网络是不能实时传输的,总是存在延迟的情况,所以,在出售一张票以后,需要一点时间的延迟
- 改实现接口方式的卖票程序
- 每次卖票延迟100毫秒
- 改实现接口方式的卖票程序
改进后的电影院售票出现问题
- 问题
- 相同的票出现多次
- CPU的一次操作必须是原子性的
- 还出现了负数的票
- 随机性和延迟导致的
- 相同的票出现多次
- 注意
- 线程安全问题在理想状态下,不容易出现,但一旦出现对软件的影响是非常大的。
public class SellTicket implements Runnable {
// 定义100张票
private int tickets = 100;
// @Override
// public void run() {
// while (true) {
// // t1,t2,t3三个线程
// // 这一次的tickets = 100;
// if (tickets > 0) {
// // 为了模拟更真实的场景,我们稍作休息
// try {
// Thread.sleep(100); // t1就稍作休息,t2就稍作休息
// } catch (InterruptedException e) {
// e.printStackTrace();
// }
//
// System.out.println(Thread.currentThread().getName() + "正在出售第"
// + (tickets--) + "张票");
// // 理想状态:
// // 窗口1正在出售第100张票
// // 窗口2正在出售第99张票
// // 但是呢?
// // CPU的每一次执行必须是一个原子性(最简单基本的)的操作。
// // 先记录以前的值
// // 接着把ticket--
// // 然后输出以前的值(t2来了)
// // ticket的值就变成了99
// // 窗口1正在出售第100张票
// // 窗口2正在出售第100张票
//
// }
// }
// }
@Override
public void run() {
while (true) {
// t1,t2,t3三个线程
// 这一次的tickets = 1;
if (tickets > 0) {
// 为了模拟更真实的场景,我们稍作休息
try {
Thread.sleep(100); //t1进来了并休息,t2进来了并休息,t3进来了并休息,
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + "正在出售第"
+ (tickets--) + "张票");
//窗口1正在出售第1张票,tickets=0
//窗口2正在出售第0张票,tickets=-1
//窗口3正在出售第-1张票,tickets=-2
}
}
}
}
解决线程安全问题的基本思想
- 首先想为什么出现问题?(也是我们判断是否有问题的标准)
- 是否是多线程环境
- 是否有共享数据
- 是否有多条语句操作共享数据
- 如何解决多线程安全问题呢?
- 基本思想:让程序没有安全问题的环境。
- 把多个语句操作共享数据的代码给锁起来,让任意时刻只能有一个线程执行即可。
- 基本思想:让程序没有安全问题的环境。
同步的特点
- 同步的前提
- 多个线程
- 多个线程使用的是同一个锁对象
- 同步的好处
- 同步的出现解决了多线程的安全问题。
- 同步的弊端
- 当线程相当多时,因为每个线程都会去判断同步上的锁,这是很耗费资源的,无形中会降低程序的运行效率。
解决线程安全问题实现1
- 同步代码块
- 格式:
- synchronized(对象){需要同步的代码;}
- 同步可以解决安全问题的根本原因就在那个对象上。该对象如同锁的功能。
- 同步代码块的对象可以是哪些呢?
public class SellTicket implements Runnable {
// 定义100张票
private int tickets = 100;
//创建锁对象
private Object obj = new Object();
@Override
public void run() {
while (true) {
// t1,t2,t3都能走到这里
// 假设t1抢到CPU的执行权,t1就要进来
// 假设t2抢到CPU的执行权,t2就要进来,发现门是关着的,进不去。所以就等着。
// 门(开,关)
synchronized (obj) { // 发现这里的代码将来是会被锁上的,所以t1进来后,就锁了。(关)
if (tickets > 0) {
try {
Thread.sleep(100); // t1就睡眠了
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName()
+ "正在出售第" + (tickets--) + "张票 ");
//窗口1正在出售第100张票
}
} //t1就出来可,然后就开门。(开)
}
}
}
/*
* 如何解决线程安全问题呢?
* 注意:
* 同步可以解决安全问题的根本原因就在那个对象上。该对象如同锁的功能。
* 多个线程必须是同一把锁。
*/
public class SellTicketDemo {
public static void main(String[] args) {
// 创建资源对象
SellTicket st = new SellTicket();
// 创建三个线程对象
Thread t1 = new Thread(st, "窗口1");
Thread t2 = new Thread(st, "窗口2");
Thread t3 = new Thread(st, "窗口3");
// 启动线程
t1.start();
t2.start();
t3.start();
}
}
解决线程安全问题实现2:同步方法
- 就是把同步关键字加到方法上
- 同步方法的锁对象是什么呢?
- this
- 如果是静态方法,同步方法的锁对象又是什么呢?
- 类的字节码文件对象。
- 那么,我们到底使用谁?
- 如果锁对象是this,就可以考虑使用同步方法。
- 否则能使用同步代码块的尽量使用同步代码块。
同步解决线程安全问题总结
- A:同步代码块
- synchronized(对象) {
需要被同步的代码;
} - 这里的锁对象可以是
任意对象
。
- synchronized(对象) {
- B:同步方法
- 把同步关键字加在方法上。
- 这里的锁对象是
this
- C:静态同步方法
- 把同步关键字加在方法上。
- 锁对象是
类的字节码文件对象
。(反射会讲)
public class SellTicket implements Runnable {
// 定义100张票
private static int tickets = 100;
// 定义同一把锁
private Object obj = new Object();
private Demo d = new Demo();
private int x = 0;
//同步代码块用obj做锁
// @Override
// public void run() {
// while (true) {
// synchronized (obj) {
// if (tickets > 0) {
// try {
// Thread.sleep(100);
// } catch (InterruptedException e) {
// e.printStackTrace();
// }
// System.out.println(Thread.currentThread().getName()
// + "正在出售第" + (tickets--) + "张票 ");
// }
// }
// }
// }
//同步代码块用任意对象做锁
// @Override
// public void run() {
// while (true) {
// synchronized (d) {
// if (tickets > 0) {
// try {
// Thread.sleep(100);
// } catch (InterruptedException e) {
// e.printStackTrace();
// }
// System.out.println(Thread.currentThread().getName()
// + "正在出售第" + (tickets--) + "张票 ");
// }
// }
// }
// }
@Override
public void run() {
while (true) {
if(x%2==0){
synchronized (SellTicket.class) {//静态方法的安全锁,若是普通同步方法则为:this
if (tickets > 0) {
try {
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName()
+ "正在出售第" + (tickets--) + "张票 ");
}
}
}else {
// synchronized (d) {
// if (tickets > 0) {
// try {
// Thread.sleep(100);
// } catch (InterruptedException e) {
// e.printStackTrace();
// }
// System.out.println(Thread.currentThread().getName()
// + "正在出售第" + (tickets--) + "张票 ");
// }
// }
sellTicket();
}
x++;
}
}
//同步方法:
//如果一个方法一进去就看到了代码被同步了,那么我就再想能不能把这个同步加在方法上呢?
// private synchronized void sellTicket() {
// if (tickets > 0) {
// try {
// Thread.sleep(100);
// } catch (InterruptedException e) {
// e.printStackTrace();
// }
// System.out.println(Thread.currentThread().getName()
// + "正在出售第" + (tickets--) + "张票 ");
// }
// }
//静态同步方法:
private static synchronized void sellTicket() {
if (tickets > 0) {
try {
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName()
+ "正在出售第" + (tickets--) + "张票 ");
}
}
}
class Demo {
}
public class SellTicketDemo {
public static void main(String[] args) {
// 创建资源对象
SellTicket st = new SellTicket();
// 创建三个线程对象
Thread t1 = new Thread(st, "窗口1");
Thread t2 = new Thread(st, "窗口2");
Thread t3 = new Thread(st, "窗口3");
// 启动线程
t1.start();
t2.start();
t3.start();
}
}
常见线程安全集合
public class ThreadDemo {
public static void main(String[] args) {
// 线程安全的类
StringBuffer sb = new StringBuffer();
Vector<String> v = new Vector<String>();
Hashtable<String, String> h = new Hashtable<String, String>();
// Vector是线程安全的时候才去考虑使用的,但是我还说过即使要安全,我也不用你
// 那么到底用谁呢?
// public static <T> List<T> synchronizedList(List<T> list)
List<String> list1 = new ArrayList<String>();// 线程不安全
List<String> list2 = Collections
.synchronizedList(new ArrayList<String>()); // 线程安全
}
}
以上是关于No_16_0325 Java基础学习第二十四天—多线程学习总结的主要内容,如果未能解决你的问题,请参考以下文章