HDU 5912 Fraction(模拟——分子式化简求解)

Posted Reqaw’s Blog

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了HDU 5912 Fraction(模拟——分子式化简求解)相关的知识,希望对你有一定的参考价值。

题目链接:

http://acm.hdu.edu.cn/showproblem.php?pid=5912

Problem Description
Mr. Frog recently studied how to add two fractions up, and he came up with an evil idea to trouble you by asking you to calculate the result of the formula below:
技术分享

As a talent, can you figure out the answer correctly?
 
Input
The first line contains only one integer T, which indicates the number of test cases.

For each test case, the first line contains only one integer n (n8).

The second line contains n integers: a1,a2,?an(1ai10).
The third line contains n integers: b1,b2,?,bn(1bi10).
 
Output
For each case, print a line “Case #x: p q”, where x is the case number (starting from 1) and p/q indicates the answer.

You should promise that p/q is irreducible.
 
Sample Input
1
2
1 1
2 3
 
Sample Output
Case #1: 1 2
Hint
Here are the details for the first sample: 2/(1+3/1) = 1/2
 
Source
题意描述:
给出上述图中的分子式,给出ai和bi
计算该分子形式的最简结果
解题思路:
总体来说还是比较考验数学思维的。
简单实用代入法看一下,例如只有a1,a2和b1,b2,那么结果可以写成b1/(a1+b2/a2)
初始是fz(分子)=b2,fm=a2,经过化简可得结果为b1*fm/(a1*fm+fz),容易得到fz += fm*a[i];和fm *= b[i];只不过fz和fm需要交换一下(仔细验算一下)。
代码实现:
 1 #include<stdio.h>
 2 #include<algorithm>
 3 using namespace std;
 4 int gcd(int a,int b)
 5 {
 6     return b==0? a : gcd(b,a%b);
 7 }
 8 int main()
 9 {
10     int T,t=1,n,i,a[11],b[11],k;
11     scanf("%d",&T);
12     while(T--)
13     {
14         scanf("%d",&n);
15         for(i=1;i<=n;i++) scanf("%d",&a[i]);
16         for(i=1;i<=n;i++) scanf("%d",&b[i]);
17         int fz=b[n],fm=a[n];
18         for(i=n-1;i>=1;i--)
19         {
20             fz += fm*a[i];
21             fm *= b[i];
22             swap(fz,fm);
23         }
24         k=gcd(fz,fm);
25         printf("Case #%d: %d %d\n",t++,fz/k,fm/k);
26     }
27     return 0;
28  } 

 

 

 











以上是关于HDU 5912 Fraction(模拟——分子式化简求解)的主要内容,如果未能解决你的问题,请参考以下文章

hdu 5912Fraction

CCPC2016长春B (hdu 5912 Fraction)

LeetCode 166. Fraction to Recurring Decimal(模拟)

166 Fraction to Recurring Decimal 分数到小数

设计一个表示分数的类Fraction。这个类用两个int类型的变量分别表示分子和分母。(Java语言)

hdu 5949