bzoj 2820 / SPOJ PGCD 莫比乌斯反演
Posted ( m Lweleth)
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了bzoj 2820 / SPOJ PGCD 莫比乌斯反演相关的知识,希望对你有一定的参考价值。
那啥bzoj2818也是一样的,突然想起来好像拿来当周赛的练习题过,用欧拉函数写掉的。
求$(i,j)=prime$对数
\begin{eqnarray*}\sum_{i=1}^{n}\sum_{j=1}^{m}[(i,j)=p]&=&\sum_{p=2}^{min(n,m)}\sum_{i=1}^{\lfloor\frac{n}{p}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{p}\rfloor}[i⊥j]\newline&=&\sum_{p=2}^{min(n,m)}\sum_{i=1}^{\lfloor\frac{n}{p}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{p}\rfloor}\sum_{d|(i,j)}{\mu(d)}\newline&=&\sum_{p=2}^{min(n,m)}\sum_{d}^{\lfloor\frac{min(n,m)}{p}\rfloor}{\mu(d)}\lfloor\frac{n}{pd}\rfloor\lfloor\frac{m}{pd}\rfloor\end{eqnarray*}
枚举质数的倍数,预处理好,最后底数优化一下。
/** @Date : 2017-09-09 00:24:45 * @FileName: bzoj 2820 莫比乌斯反演.cpp * @Platform: Windows * @Author : Lweleth ([email protected]) * @Link : https://github.com/ * @Version : $Id$ */ #include <bits/stdc++.h> #define LL long long #define PII pair<int ,int> #define MP(x, y) make_pair((x),(y)) #define fi first #define se second #define PB(x) push_back((x)) #define MMG(x) memset((x), -1,sizeof(x)) #define MMF(x) memset((x),0,sizeof(x)) #define MMI(x) memset((x), INF, sizeof(x)) using namespace std; const int INF = 0x3f3f3f3f; const int N = 1e7+20; const double eps = 1e-8; int pri[N]; int mu[N]; LL sum[N]; int c = 0; bool vis[N]; void mobius() { MMF(vis); MMF(mu); mu[1] = 1; for(int i = 2; i < N; i++) { if(!vis[i]) pri[c++] = i, mu[i] = -1; for(int j = 0; j < c && i * pri[j] < N; j++) { vis[i * pri[j]] = 1; if(i % pri[j] == 0) { mu[i * pri[j]] = 0; break; } else mu[i * pri[j]] = -mu[i]; } } for(int i = 0; i < c; i++) //预处理 mu[dp/p] for(int j = 1; j * pri[i] < N; j++) sum[j * pri[i]] += mu[j]; for(int i = 1; i < N; i++) sum[i] += sum[i - 1]; } int main() { mobius(); int T; cin >> T; while(T--) { LL n, m; scanf("%lld%lld", &n, &m); LL ans = 0; LL mi = min(n, m); LL last; for(int i = 1; i <= mi; i = last + 1) { last = min(n/(n/i), m/(m/i)); ans += (n / i) * (m / i) * (sum[last] - sum[i - 1]); } printf("%lld\n", ans); } return 0; }
以上是关于bzoj 2820 / SPOJ PGCD 莫比乌斯反演的主要内容,如果未能解决你的问题,请参考以下文章
BZOJ2226[Spoj 5971] LCMSum 莫比乌斯反演(欧拉函数?)