洛谷 P2647 最大收益
Posted 一蓑烟雨任生平
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了洛谷 P2647 最大收益相关的知识,希望对你有一定的参考价值。
题目描述
现在你面前有n个物品,编号分别为1,2,3,……,n。你可以在这当中任意选择任意多个物品。其中第i个物品有两个属性Wi和Ri,当你选择了第i个物品后,你就可以获得Wi的收益;但是,你选择该物品以后选择的所有物品的收益都会减少Ri。现在请你求出,该选择哪些物品,并且该以什么样的顺序选取这些物品,才能使得自己获得的收益最大。
注意,收益的减少是会叠加的。比如,你选择了第i个物品,那么你就会获得了Wi的收益;然后你又选择了第j个物品,你又获得了Wj-Ri收益;之后你又选择了第k个物品,你又获得了Wk-Ri-Rj的收益;那么你获得的收益总和为Wi+(Wj-Ri)+(Wk-Ri-Rj)。
输入输出格式
输入格式:
第一行一个正整数n,表示物品的个数。
接下来第2行到第n+1行,每行两个正整数Wi和Ri,含义如题目所述。
输出格式:
输出仅一行,表示最大的收益。
输入输出样例
2
5 2
3 5
6
说明
20%的数据满足:n<=5,0<=Wi,Ri<=1000。
50%的数据满足:n<=15,0<=Wi,Ri<=1000。
100%的数据满足:n<=3000,0<=Wi,Ri<=200000。
样例解释:我们可以选择1号物品,获得了5点收益;之后我们再选择2号物品,获得3-2=1点收益。最后总的收益值为5+1=6。
思路:
算法1:
首先考虑最暴力的做法,枚举每个物品是选还是不选。得到一个物品的集合后,枚举其全排列。在所有方案中找到最大值。时间复杂度O(2^n*n!),可以通过20%的数据。
算法2:
考虑对题目进行一个等价的变换:即选择某个物品后,选择该物品前所有选择的物品的收益减少Ri。
然后我们可以贪心地对Ri从大到小排个序,然后搜索的时候只需要枚举每个物品是选还是不选,无需枚举全排列了。时间复杂度是O(2^n),可以通过50%的数据。
算法3:
受算法2的启发,我们可以设计一个动态规划算法。首先仍然是要按照Ri从大到小排个序。然后设F[i][j]表示前i个物品中选j个可以获得的收益最大值。
状态转移方程:F[i][j]=max{F[i-1][j],F[i-1][j-1]+W[i]-R[i]*(j-1)}
边界条件:F[1][1]=W[1]
最后的答案=max{F[n][i]}
算法2和算法3的贪心的正确性不难证明。
#include<cstdio> #include<cstring> #include<iostream> #include<algorithm> using namespace std; int n,ans,f[3001][3001]; struct nond{ int w,r; }v[3001]; int cmp(nond a,nond b){ return a.r>b.r; } int main(){ scanf("%d",&n); for(int i=1;i<=n;i++) scanf("%d%d",&v[i].w,&v[i].r); sort(v+1,v+1+n,cmp); f[1][1]=v[1].w; for(int i=1;i<=n;i++) for(int j=1;j<=i;j++) f[i][j]=max(f[i-1][j],f[i-1][j-1]+v[i].w-v[i].r*(j-1)); for(int i=1;i<=n;i++) ans=max(ans,f[n][i]); cout<<ans; }
以上是关于洛谷 P2647 最大收益的主要内容,如果未能解决你的问题,请参考以下文章
NC41 最长无重复子数组/NC133链表的奇偶重排/NC116把数字翻译成字符串/NC135 股票交易的最大收益/NC126换钱的最少货币数/NC45实现二叉树先序,中序和后序遍历(递归)(代码片段