人群密度图的生成(MATLAB+malldataset)
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了人群密度图的生成(MATLAB+malldataset)相关的知识,希望对你有一定的参考价值。
参见人群密度估计之MCNN写的关于密度图的生成,在MATLAB跑了程序,代码如下:
clear;
load(‘perspective_roi.mat‘);
load(‘mall_gt.mat‘);
m=480;n=640;
m=m/4;
n=n/4;
mask = imresize(roi.mask,0.25); %图像缩小4倍
for i=1:2000 %2000幅图像
gt = frame{i}.loc; %第一个frame结构体的loc字段
gt = gt/4;
d_map = zeros(m,n);
for j=1:size(gt,1)
ksize = ceil(25/sqrt(pMapN(floor(gt(j,2)),1)));
ksize = max(ksize,7);
ksize = min(ksize,25);
radius = ceil(ksize/2);
sigma = ksize/2.5;
h = fspecial(‘gaussian‘,ksize,sigma);
x_ = max(1,floor(gt(j,1)));
y_ = max(1,floor(gt(j,2)));
if (x_-radius+1<1)
for ra = 0:radius-x_-1
h(:,end-ra) = h(:,end-ra)+h(:,1);
h(:,1)=[];
end
end
if (y_-radius+1<1)
for ra = 0:radius-y_-1
h(end-ra,:) = h(end-ra,:)+h(1,:);
h(1,:)=[];
end
end
if (y_-radius+1<1)
for ra = 0:radius-y_-1
h(end-ra,:) = h(end-ra,:)+h(1,:);
h(1,:)=[];
end
end
if (x_+ksize-radius>n)
for ra = 0:x_+ksize-radius-n-1
h (:,1+ra) = h(:,1+ra)+h(:,end);
h(:,end) = [];
end
end
if(y_+ksize-radius>m)
for ra = 0:y_+ksize-radius-m-1
h (1+ra,:) = h(1+ra,:)+h(end,:);
h(end,:) = [];
end
end
d_map(max(y_-radius+1,1):min(y_+ksize-radius,m),max(x_-radius+1,1):min(x_+ksize-radius,n))...
= d_map(max(y_-radius+1,1):min(y_+ksize-radius,m),max(x_-radius+1,1):min(x_+ksize-radius,n))...
+ h;
end
map0_255 = Normalize(d_map)
% %方法1,保存为图片,再转为LMDB
% %把数组A中的数转换成字符串表示形式
str=num2str(i,‘./density/seq_%06d.jpg‘);
%imwrite(d_map,str);
imshow( map0_255);
%方法2,直接转为HDF5
% trainLabels=permute(d_map,[2 1]);
% str=num2str(i,‘./density_map/seq_%06d.h5‘);
% h5create(str,‘/label‘,size(trainLabels),‘Datatype‘,‘double‘);
% h5write(str,‘/label‘,trainLabels);
end
最后得到的图像规到0-255后输出为:
而d_map中的数据大致是,d_map是0-1之间的数值
对d_map中的数值分析可以得知,就算归到0-255,数值依然很小,所以,成黑白状态。
说明:在pMapN中存的是透视变化的加权值,Roi表示在图像中定义的ROI区域,mask掩码可以实现只对ROI区域操作。
这里为了加速模型的收敛,我进行了减均值和归一化操作。由于数据集只有2000,并不像imagenet那样的大数据,为了提高泛化能力,适应不同的数据集,我这里的均值没有取2000个图片的均值,而是直接设置为127.5,归一化则除以128。
测试程序如下:
- clear;clc;
- addpath(‘/home/caffe/matlab‘);
- caffe.reset_all();
- caffe.set_device(0);
- caffe.set_mode_gpu();
- model = ‘deploy.prototxt‘;
- weights = ‘network.caffemodel‘;
- net = caffe.Net(model, weights, ‘test‘);
- cropImg=imread(‘IMG_12.jpg‘); //cropImg是图像裁剪
- cropImg = cropImg(:, :, [3, 2, 1]);
- cropImg = permute(cropImg, [2, 1, 3]); //permute(多维数组,[维数的组合])
- cropImg = single(cropImg);
- cropImg=imresize(cropImg,[480 640]);
- cropImg=cropImg-127.5/128;
- res = net.forward({cropImg});
- figure,imshow(cropImg,[]);
- figure,imagesc(res{1,1});
- count = sum(sum(res{1,1}))
- caffe.reset_all();
贴几个效果图:
以上是关于人群密度图的生成(MATLAB+malldataset)的主要内容,如果未能解决你的问题,请参考以下文章