机器学习基石笔记综述

Posted yesuuu

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了机器学习基石笔记综述相关的知识,希望对你有一定的参考价值。

课程定位:

注重基础、故事性

 

机器学习定义:

data - Algo - improve

 

机器学习使用条件

1、有优化的目标,可量化的。

2、规则不容易写下来,需要学习。

3、要有数据

 

一个可能的推荐系统:

skill: 预测用户给电影的打分

用户的各个特征 * 电影的各个特征。。。

 

机器学习明确定义:

现实中的问题 f(x) = y

机器学习,通过算法寻找g 使得g与f尽可能接近。

A从一个假说集H里面选择一个g。假说集H事实上也是一个输入。模型model = A + H !!!

机器学习定义:有数据集D, 有假说集H,在假说集中用演算法A寻找最接近真实模型f的g

 

机器学习与数据挖掘的差别:

机器学习:找到与目标函数f比较接近的假设函数g

数据挖掘:看看有没有有用的东西。。

都需要对大数据的有效计算与处理。

 

机器学习与人工智能的差别:

机器学习是实现人工智能的方法。

比如下棋,可以通过机器学习实现,也可以不使用data,直接通过game tree实现。

 

机器学习与统计的差别:

统计是通过数据,做出一些推论(抛硬币正面概率>0.5)

在机器学习中,可以认为g是推论,f未知。因此统计工具可以用于机器学习。

但是机器学习更注重算法,而不是统计的结论。 

以上是关于机器学习基石笔记综述的主要内容,如果未能解决你的问题,请参考以下文章

机器学习基石笔记1

机器学习基石笔记11——机器可以怎样学习

机器学习基石笔记1——在何时可以使用机器学习

机器学习基石笔记12——机器可以怎样学习

机器学习基石笔记5——为什么机器可以学习

机器学习基石笔记7——为什么机器可以学习