卡特兰数

Posted lucky_少哖

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了卡特兰数相关的知识,希望对你有一定的参考价值。

令h(0)=1,h(1)=1,catalan数满足递推式:
h(n)= h(0)*h(n-1)+h(1)*h(n-2) + ... + h(n-1)h(0) (n>=2)
例如:h(2)=h(0)*h(1)+h(1)*h(0)=1*1+1*1=2
h(3)=h(0)*h(2)+h(1)*h(1)+h(2)*h(0)=1*2+1*1+2*1=5
另类递推式:
h(n)=h(n-1)*(4*n-2)/(n+1);
递推关系的解为:
h(n)=C(2n,n)/(n+1) (n=0,1,2,...)
递推关系的另类解为:
h(n)=c(2n,n)-c(2n,n-1)(n=0,1,2,...)

作用:

括号化:矩阵连乘: P=a1×a2×a3×……×an,依据乘法结合律,不改变其顺序,只用括号表示成对的乘积,试问有几种括号化的方案?

出栈次序:一个栈(无穷大)的进栈序列为1,2,3,…,n,有多少个不同的出栈序列?

凸多边形三角划分:在一个凸多边形中,通过若干条互不相交的对角线,把这个多边形划分成了若干个三角形。任务是键盘上输入凸多边形的边数n,求不同划分的方案数f(n)。比如当n=6时,f(6)=14。

 

原始代码:

__int64 catalan[40];  
void catalans()
{
    memset(catalan,0,sizeof(catalan));  
    catalan[0]= catalan[1]= 1;  
    for(int i=2; i<= 35; i++)  
    {  
        for(int j=0; j< i; j++)  
            catalan[i]+=catalan[j]*catalan[i-j-1];  
    }  
}
    

大数代码:

void catalan() //求卡特兰数
{
    int i, j, len, carry, temp;
    a[1][0] = b[1] = 1;
    len = 1;
    for(i = 2; i <= 100; i++)
    {
        for(j = 0; j < len; j++) //乘法
        a[i][j] = a[i-1][j]*(4*(i-1)+2);
        carry = 0;
        for(j = 0; j < len; j++) //处理相乘结果
        {
            temp = a[i][j] + carry;
            a[i][j] = temp % 10;
            carry = temp / 10;
        }
        while(carry) //进位处理
        {
            a[i][len++] = carry % 10;
            carry /= 10;
        }
        carry = 0;
        for(j = len-1; j >= 0; j--) //除法
        {
            temp = carry*10 + a[i][j];
            a[i][j] = temp/(i+1);
            carry = temp%(i+1);
        }
        while(!a[i][len-1]) //高位零处理
        len --;
        b[i] = len;
    }
}

 

以上是关于卡特兰数的主要内容,如果未能解决你的问题,请参考以下文章

卡特兰数-Catalan数

Golang 实现卡特兰数

谁有卡特兰数的证明过程?

卡特兰数总结

卡特兰数

Catalan number (卡特兰数)