HDU——T The King’s Problem

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了HDU——T The King’s Problem相关的知识,希望对你有一定的参考价值。

http://acm.hdu.edu.cn/showproblem.php?pid=3861

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 3254    Accepted Submission(s): 1151


Problem Description
In the Kingdom of Silence, the king has a new problem. There are N cities in the kingdom and there are M directional roads between the cities. That means that if there is a road from u to v, you can only go from city u to city v, but can’t go from city v to city u. In order to rule his kingdom more effectively, the king want to divide his kingdom into several states, and each city must belong to exactly one state. What’s more, for each pair of city (u, v), if there is one way to go from u to v and go from v to u, (u, v) have to belong to a same state. And the king must insure that in each state we can ether go from u to v or go from v to u between every pair of cities (u, v) without passing any city which belongs to other state.
  Now the king asks for your help, he wants to know the least number of states he have to divide the kingdom into.
 

 

Input
The first line contains a single integer T, the number of test cases. And then followed T cases. 

The first line for each case contains two integers n, m(0 < n <= 5000,0 <= m <= 100000), the number of cities and roads in the kingdom. The next m lines each contains two integers u and v (1 <= u, v <= n), indicating that there is a road going from city u to city v.
 

 

Output
The output should contain T lines. For each test case you should just output an integer which is the least number of states the king have to divide into.
 

 

Sample Input
1 3 2 1 2 1 3
 

 

Sample Output
2
 

 

Source
 

 

Recommend
lcy   |   We have carefully selected several similar problems for you:  3863 3859 3868 3865 3862 
 
 
Tarjan缩点+最大独立集(强连通个数-最大匹配数)
  1 #include <cstring>
  2 #include <cstdio>
  3 
  4 #define min(a,b) (a<b?a:b)
  5 #define max(a,b) (a>b?a:b)
  6 const int N(5000+115);
  7 const int M(100000+5);
  8 int hed[N],sumedge,had[N];
  9 struct Edge
 10 {
 11     int v,next;
 12     Edge(int v=0,int next=0):v(v),next(next){}
 13 }edge[M],e[M];
 14 inline void ins(int u,int v,int *head,Edge *edge)
 15 {
 16     edge[++sumedge]=Edge(v,head[u]);
 17     head[u]=sumedge;
 18 }
 19 
 20 int tim,dfn[N],low[N];
 21 int top,instack[N],Stack[N];
 22 int sumcol,col[N],rd[N],cd[N];
 23 void DFS(int u)
 24 {
 25     low[u]=dfn[u]=++tim;
 26     Stack[++top]=u; instack[u]=1;
 27     for(int v,i=hed[u];i;i=edge[i].next)
 28     {
 29         v=edge[i].v;
 30         if(!dfn[v]) DFS(v), low[u]=min(low[u],low[v]);
 31         else if(instack[v]) low[u]=min(low[u],dfn[v]);
 32     }
 33     if(low[u]==dfn[u])
 34     {
 35         col[u]=++sumcol;
 36         for(;u!=Stack[top];top--)
 37         {
 38             col[Stack[top]]=sumcol;
 39             instack[Stack[top]]=0;
 40         }
 41         instack[u]=0; top--;
 42     }
 43 }
 44 
 45 int sumvis,vis[N],match[N];
 46 bool find(int u)
 47 {
 48     for(int v,i=had[u];i;i=e[i].next)
 49     {
 50         v=e[i].v;
 51         if(vis[v]==sumvis) continue;
 52         vis[v]=sumvis;
 53         if(!match[v]||find(match[v]))
 54         {
 55             match[v]=u;
 56             return true;
 57         }
 58     }
 59     return false;
 60 }
 61 
 62 inline void init()
 63 {
 64     tim=top=sumedge=sumcol=sumvis=0;
 65     memset(e,0,sizeof(e));
 66     memset(vis,0,sizeof(vis));
 67     memset(col,0,sizeof(col));
 68     memset(dfn,0,sizeof(dfn));
 69     memset(low,0,sizeof(low));
 70     memset(hed,0,sizeof(hed));
 71     memset(had,0,sizeof(had));
 72     memset(edge,0,sizeof(edge));
 73     memset(Stack,0,sizeof(Stack));
 74     memset(match,0,sizeof(match));
 75     memset(instack,0,sizeof(instack));
 76 }
 77 inline void read(int &x)
 78 {
 79     x=0; register char ch=getchar();
 80     for(;ch>9||ch<0;) ch=getchar();
 81     for(;ch>=0&&ch<=9;ch=getchar()) x=x*10+ch-0;
 82 }
 83 
 84 int main()
 85 {
 86     int t; read(t);
 87     for(int n,m;t--;init())
 88     {
 89         read(n),read(m);
 90         for(int u,v;m--;)
 91             read(u),read(v),ins(u,v,hed,edge);
 92         for(int i=1;i<=n;i++)
 93             if(!dfn[i]) DFS(i);
 94         for(int u=1;u<=n;u++)
 95             for(int v,i=hed[u];i;i=edge[i].next)
 96             {
 97                 v=edge[i].v;
 98                 if(col[u]!=col[v]) ins(col[u],col[v],had,e);
 99             }
100         int ans=0;
101         for(int i=1;i<=sumcol;i++)
102         {
103             sumvis++;
104             if(find(i)) ans++;
105         }
106         printf("%d\n",sumcol-ans);
107     }
108     return 0;
109 }
 

以上是关于HDU——T The King’s Problem的主要内容,如果未能解决你的问题,请参考以下文章

HDU3861The King’s Problem

HDU 3861.The King’s Problem 强联通分量+最小路径覆盖

hdu 3861 The King’s Problem trajan缩点+二分图匹配

HDU - 3861 The King’s Problem (强连通分量+最小路径覆盖)

HDU 3861 The King's Problem(强连通分量缩点+最小路径覆盖)

HDU 3861 The King’s Problem 最小路径覆盖(强连通分量缩点+二分图最大匹配)