LibreOJ #526. 「LibreOJ β Round #4」子集
Posted ZlycerQan
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了LibreOJ #526. 「LibreOJ β Round #4」子集相关的知识,希望对你有一定的参考价值。
二次联通门 : LibreOJ #526. 「LibreOJ β Round #4」子集
/* LibreOJ #526. 「LibreOJ β Round #4」子集 考虑一下,若两个数奇偶性相同 若同为奇数, 那加1后就是偶数, gcd的乘积就一定不是1 偶数相同 那么我们把原数中的偶数分为一个集合,奇数分为一个集合 把互相之间不符合要求的连边 那么问题就转化为了二分图求最大独立集 */ #include <cstdio> #include <iostream> #include <queue> #include <cstring> const int BUF = 12312312; char Buf[BUF], *buf = Buf; #define INF 1e9 inline void read (long long &now) { for (now = 0; !isdigit (*buf); ++ buf); for (; isdigit (*buf); now = now * 10 + *buf - ‘0‘, ++ buf); } #define Max 600 struct E { E *n, *r; int v, f; }; E *list[Max], poor[Max * 10000], *Ta = poor; int S, T; class Flow_Type { private : int d[Max]; bool Bfs (int S, int T) { memset (d, -1, sizeof d); d[S] = 0; std :: queue <int> Queue; int now; E *e; for (Queue.push (S); !Queue.empty (); Queue.pop ()) { now = Queue.front (); for (e = list[now]; e; e = e->n) if (d[e->v] == -1 && e->f) { d[e->v] = d[now] + 1; if (e->v == T) return true; Queue.push (e->v); } } return d[T] != -1; } int Flowing (int now, int F) { if (now == T || !F) return F; int res = 0, pos; E *e; for (e = list[now]; e; e = e->n) { if (d[e->v] != d[now] + 1 || !e->f) continue; pos = Flowing (e->v, e->f < F ? e->f : F); if (pos) { F -= pos, res += pos, e->f -= pos, e->r->f += pos; if (!F) return res; } } if (res != F) d[now] = -1; return res; } public : inline void In (int u, int v) { ++ Ta, Ta->v = v, Ta->n = list[u], list[u] = Ta, Ta->f = 1; ++ Ta, Ta->v = u, Ta->n = list[v], list[v] = Ta, Ta->f = 0; list[u]->r = list[v], list[v]->r = list[u]; } int Dinic (int S, int T) { int Answer = 0; for (; Bfs (S, T); Answer += Flowing (S, INF)); return Answer; } }; Flow_Type F; long long key[Max]; long long Gcd (long long a, long long b) { return !b ? a : Gcd (b, a % b); } int Main () { fread (buf, 1, BUF, stdin); long long N; read (N); S = N + 1, T = N + 2; register int i, j; for (i = 1; i <= N; ++ i) { read (key[i]); if (key[i] & 1) F.In (i, T); else F.In (S, i); } for (i = 1; i <= N; ++ i) { if ((key[i] & 1) == 0) for (j = 1; j <= N; ++ j) if (key[j] & 1) if (Gcd (key[i], key[j]) == 1 && Gcd (key[i] + 1, key[j] + 1) == 1) F.In (i, j); } printf ("%d", N - F.Dinic (S, T)); return 0; } int ZlycerQan = Main (); int main (int argc, char *argv[]) {;}
以上是关于LibreOJ #526. 「LibreOJ β Round #4」子集的主要内容,如果未能解决你的问题,请参考以下文章
LibreOJ「LibreOJ β Round #4」 游戏
LibreOJ #525. 「LibreOJ β Round #4」多项式
LibreOJ #528. 「LibreOJ β Round #4」求和