算法 快速排序
Posted 细雨蓝枫
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了算法 快速排序相关的知识,希望对你有一定的参考价值。
快速排序 quick sort
介绍:
快速排序(Quicksort)是对冒泡排序的一种改进。在*均状况下,排序 n 个项目要Ο(n log n)次比较。在最坏状况下则需要Ο(n2)次比较,但这种状况并不常见。事实上,快速排序通常明显比其他Ο(n log n) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来,且在大部分真实世界的数据,可以决定设计的选择,减少所需时间的二次方项之可能性。
原理:
通过一趟排序将待排记录分割成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列,最终完成整个数据排序的目的。 值得注意的是,快速排序不是一种稳定的排序算法,也就是说,多个相同的值的相对位置也许会在算法结束时产生变动。
步骤:
1、从数列中挑出一个元素,称为 “基准”(pivot),
2、重新排序数列,将基准归位!所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。
3、递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。
注:在待排序的文件中,若存在多个关键字相同的记录,经过排序后这些具有相同关键字的记录之间的相对次序保持不变,该排序方法是稳定的;若具有相同关键字的记录之间的相对次序发生改变,则称这种排序方法是不稳定的。要注意的是,排序算法的稳定性是针对所有输入实例而言的。即在所有可能的输入实例中,只要有一个实例使得算法不满足稳定性要求,则该排序算法就是不稳定的。
革新点:先从后扫描(比基准值)小的,再从前扫描(比基准值)大的!
快速排序动画演示:
算法实现:
import random as rd import time import sys sys.setrecursionlimit(100000) def cal_time(func): """ 装饰器打印执行时间 """ def wrapper(*args, **kwargs): t1 = time.time() x = func(*args, **kwargs) t2 = time.time() print("%s running time %s secs." % (func.__name__, t2 - t1)) return x return wrapper def partition(data, left, right): """ 区内数据排序处理 快速排序的核心代码。 其实就是将选取的tmp不断交换,将比它小的换到左边,将比它大的换到右边。 它自己也在交换中不断变换自己的位置,直到完成所有的交换为止。 但在函数调用的过程中,pivot_key的值始终不变。 :param low:左边界索引 :param high:右边界索引 :return:分完左右区后tmp所在位置的索引 """ tmp = data[left] while left < right: while left < right and data[right]>=tmp: right-=1 data[left]=data[right] while left < right and data[left]<=tmp: left+=1 data[right]=data[left] data[left]=tmp return left def _quick_sort(data, left, right): """ 递归调用 """ if left < right: mid = partition(data, left, right) _quick_sort(data, left, mid - 1) _quick_sort(data, mid + 1, right) @cal_time def quick_sort(data): """ 调用入口 """ return _quick_sort(data, 0, len(data)-1) li = list(range(100000)) rd.shuffle(li) quick_sort(li)
总结:
- 快速排序的时间性能取决于递归的深度。
- 当tmp恰好处于记录关键码的中间值时,大小两区的划分比较均衡,接*一个*衡二叉树,此时的时间复杂度为O(nlog(n))。
- 当原记录集合是一个正序或逆序的情况下,分区的结果就是一棵斜树,其深度为n-1,每一次执行大小分区,都要使用n-i次比较,其最终时间复杂度为O(n^2)。
- 在一般情况下,通过数学归纳法可证明,快速排序的时间复杂度为O(nlog(n))。
- 但是由于关键字的比较和交换是跳跃式的,因此,快速排序是一种不稳定排序。
- 同时由于采用的递归技术,该算法需要一定的辅助空间,其空间复杂度为O(logn)。
以上是关于算法 快速排序的主要内容,如果未能解决你的问题,请参考以下文章