HDU 3089 (快速约瑟夫环)

Posted kimsimple

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了HDU 3089 (快速约瑟夫环)相关的知识,希望对你有一定的参考价值。

 

Josephus again

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 652    Accepted Submission(s): 181


Problem Description
In our Jesephus game, we start with n people numbered 1 to n around a circle, and we eliminated every k remaining person until only one survives. For example, here\'s the starting configuration for n = 10, k = 2, The elimination order is 2, 4, 6, 8, 10, 3, 7, 1, 9. So 5 survives.The problem: determine the survivor\'s number , J(n, k).
 

 

Input
There are multiple cases, end with EOF
each case have two integer, n, k. (1<= n <= 10^12, 1 <= k <= 1000)
 

 

Output
each case a line J(n, k)
 

 

Sample Input
10
2
10
3
 

 

Sample Output
5
4
 
first try:
#include "iostream"
#include "cstdio"
using namespace std;
#define LL long long
int main(){
    LL gg, n, k;
    while(~scanf("%lld%lld",&n,&k)){
        gg=0;
        for(LL i=2; i<=n; i++){
            gg=(gg+k)%i;
        }
        printf("%lld\\n",(LL)gg+1);
    }
    return 0;
}

Time Limit Exceeded

second try:

约瑟夫环,但是n超大

快速约瑟夫环

约瑟夫环递推公式,n为人数,k为步长。

f(1)=0

f(n)=[f(n-1)+k]%i  i∈[2,n]

f(n)还要经过起始位置修正,设起始位置为s,即ans=[f(n)+s]%n。

基本约瑟夫环优化就是当k=1的时候,每次递推就是在+1,可以直接算出来快速跳过,f(n)=f(1)+n-1

 

当n超大的时候,可以照着这种思路快速简化递推过程。在递推后期,f(x)+k在很长的周期内<i,假设有m个周期,

那么这些周期合并后的结果相当于f(x)+m*k。可以快速跳过。条件限制是: f(x)+m*k<i+(m-1)

可以推出来:

当m=1时,条件限制: f(x)+k<i

当m=2是,条件限制: f(x+1)+k<i+1=f(x)+2*k<i+1

当m=m时,条件限制:f(x)+m*k<i+(m-1)

化简有m<(i-f(x)-1)/(k-1),若能整除,就是(i-f(x)-1)/(k-1)-1,否则就是(i-f(x)-1)/(k-1)直接取整。

这样,i+=m,f(x)+=m*k,快速跳过了中间过程。

若i+m>n,说明快速跳越界了,这时候可以直接算出f(n)=f(x)+(n-i-1)*m。

 

#include "cstdio"
#define LL long long
LL solve(LL n,LL k,LL s=1)
{
    if(k==1) return (n-1+s)%n;
    LL ans=0;
    //ans=(ans+k)%i
    for(LL i=2;i<=n;)
    {
        if(ans+k<i) //快速跳跃
        {
            LL leap;
            if((i-ans-1)%(k-1)==0) leap=(i-ans-1)/(k-1)-1;
            else leap=(i-ans-1)/(k-1);
            if(i+leap>n) return ((ans+(n+1-i)*k)+s)%n;
            i+=leap;
            ans+=leap*k;
        }
        else
        {
            ans=(ans+k)%i;
            i++;
        }
    }
    return (ans+s)%n;
}
int main()
{
    //freopen("in.txt","r",stdin);
    LL n,k;
    while(scanf("%I64d%I64d",&n,&k)!=EOF)
    {
        LL ans=solve(n,k);
        if(ans==0) printf("%I64d\\n",n);
        else printf("%I64d\\n",ans);
    }
}

感谢:http://www.cnblogs.com/neopenx/p/4505298.html

算法性能考验!十分重要!

以上是关于HDU 3089 (快速约瑟夫环)的主要内容,如果未能解决你的问题,请参考以下文章

hdu 1443 Joseph (约瑟夫环)

hdu 5643 King's Game 约瑟夫环变形

hdu1443 Joseph---约瑟夫环

hdu5643, 递归求解约瑟夫环问题

HDU 5643 King's Game | 约瑟夫环变形

约瑟夫环(超好的代码存档)--19--约瑟夫环--LeetCode面试题62(圆圈最后剩下的数字)