最坏情况为线性时间的选择算法

Posted foreverys

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了最坏情况为线性时间的选择算法相关的知识,希望对你有一定的参考价值。

算法select可以确认一个有n>1个不同元素的输入数组中第i小的元素。(如果n=1,则select只返回它的唯一输入数值作为第i小的元素。)

1.将输入数组的n个元素划分为n/5(向下取整)组,每组5个元素,则至多只有一组由剩下的n mod 5个元素组成。

2.寻找这n/5(向上取整)组中每一组的中位数:首先对每组元素进行插入排序,然后确定每组有序元素的中位数。

3.对第2步中找出的n/5(向上取整)个中位数,递归调用select以找出其中位数x(如果有偶数个中位数,为了方便,约定x是较小的中位数)。

4.利用修改过的PARTITION版本,按中位数的中位数x对输入数组进行划分。让k比划分的地区中的元素数目多1,因此x是第k小的元素,并且有n-k个元素在划分的高区。

5.如果i=k,则返回x。如果i<k,则在低区递归调用select来找出第i小的元素。如果i>k,则在高区递归查找第i-k小的元素。

#include <stdio.h>

#define ARRAY_SIZE 10

int select(int a[], int l, int r, int k);
int partition(int a[],int p,int r,int pivot);
void insertsort(int a[], int low, int high);
void swap(int a[], int i, int j);

int main(void)
{
    int a[ARRAY_SIZE]={25,31,89,12,67,53,44,59,71,19};
    
    printf("%d\n",select(a,0,ARRAY_SIZE-1,6));
}

int select(int a[], int l, int r, int k)
{
    int group;
    int i;
    int left,right,mid;
    int pivot;
    int p,left_num;
    
    if (r-l+1 <= 5) {
        insertsort(a,l,r);
        return a[l+k-1];
    }
    
    group = (r-l+1+5)/5;
    for(i=0; i<group; i++) {
        left = l+5*i;
        right = (l+5*i+4) > r?r:l+5*i+4; //超出右便捷就使用右边界赋值
        mid = (left+right)/2;
        insertsort(a,left,right);
        //将各组中位数与前i个元素互换位置,方便递归select寻找中位数的中位数
        swap(a,l+i,mid); 
    }
    pivot = select(a,l,l+group-1,(group+1)/2); // 找出中位数的中位数
    
    // 用中位数的中位数作为基准的位置
    p = partition(a,l,r,pivot);
    left_num = p-l;
    if(k == left_num+1)
        return a[p];
    else if(k<=left_num) //k在低区
        return select(a, l, p-1, k);
    else //k在高区
        return select(a, p+1, r, k-left_num-1);
}

int partition(int a[],int p,int r,int pivot)
{
    int x;
    int i=p-1;
    int j,tmp;
    
    for (j=p;j<r;j++) {
        if(a[j] == pivot) {
            swap(a,j,r);
        }
    }
    x = a[r];
    
    for(j=p;j<r;j++) {
        if(a[j]<=x) {
            i++;
            tmp=a[i];
            a[i]=a[j];
            a[j]=tmp;
        }
    }
    tmp=a[r];
    a[r]=a[i+1];
    a[i+1]=tmp;
    return i+1;
}

// 插入排序
void insertsort(int a[], int low, int high)
{
    int i,j;
    int key;
    
    for(i=low+1; i<=high; i++) {
        key = a[i];
        for (j=i-1;j>=low&&key<a[j];j--) {
            a[j+1] = a[j];
        }
        a[j+1] = key;
    }
}

void swap(int a[], int i, int j)
{
    int tmp=a[i];
    
    a[i] = a[j];
    a[j] = tmp;
}

 

它的时间复杂度为O(n)

 

以上是关于最坏情况为线性时间的选择算法的主要内容,如果未能解决你的问题,请参考以下文章

算法导论习题—排序最坏情况线性时间选择算法小顺序统计量

【比较难写的算法】最坏情况线性时间的选择

随机选择算法

c_cpp 二分搜索是所有以比较为基础的搜索算法时间复杂度最低的算法。用二叉树描速二分查找算法,最坏情况下与二叉树的最高阶相同。比较二叉树线性查找也可用二叉树表示,最坏情况下比较次数为数组元素数量。任

线性时间排序

算法最坏,平均和最佳情况(Worst, Average and Best Cases)-------geeksforgeeks 翻译