spark streaming从指定offset处消费Kafka数据

Posted 牵牛花

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了spark streaming从指定offset处消费Kafka数据相关的知识,希望对你有一定的参考价值。

 spark streaming从指定offset处消费Kafka数据
2017-06-13 15:19 770人阅读 评论(2) 收藏 举报
 分类: spark(5)  

原文地址:http://blog.csdn.net/high2011/article/details/53706446

      首先很感谢原文作者,看到这篇文章我少走了很多弯路,转载此文章是为了保留一份供复习用,请大家支持原作者,移步到上面的连接去看,谢谢


一、情景:当Spark streaming程序意外退出时,数据仍然再往Kafka中推送,然而由于Kafka默认是从latest的offset读取,这会导致数据丢失。为了避免数据丢失,那么我们需要记录每次消费的offset,以便下次检查并且从指定的offset开始读取
二、环境:kafka-0.9.0、Spark-1.6.0、jdk-1.7、Scala-2.10.5、idea16
三、实现代码:
      1、引入spark和kafka的相关依赖包
[html] view plain copy
<?xml version="1.0" encoding="UTF-8"?>  
<project xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  
         xmlns="http://maven.apache.org/POM/4.0.0"  
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">  
    <modelVersion>4.0.0</modelVersion>  
  
    <groupId>com.ngaa</groupId>  
    <artifactId>test-my</artifactId>  
    <version>1.0-SNAPSHOT</version>  
    <inceptionYear>2008</inceptionYear>  
    <properties>  
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>  
        <project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>  
        <!--add  maven release-->  
        <maven.compiler.source>1.7</maven.compiler.source>  
        <maven.compiler.target>1.7</maven.compiler.target>  
        <encoding>UTF-8</encoding>  
        <!--scala版本-->  
        <scala.version>2.10.5</scala.version>  
        <!--测试机器上的scala版本-->  
        <test.scala.version>2.11.7</test.scala.version>  
  
        <jackson.version>2.3.0</jackson.version>  
        <!--slf4j版本-->  
        <slf4j-version>1.7.20</slf4j-version>  
        <!--cdh-spark-->  
        <spark.cdh.version>1.6.0-cdh5.8.0</spark.cdh.version>  
        <spark.streaming.cdh.version>1.6.0-cdh5.8.0</spark.streaming.cdh.version>  
        <kafka.spark.cdh.version>1.6.0-cdh5.8.0</kafka.spark.cdh.version>  
        <!--cdh-hadoop-->  
        <hadoop.cdh.version>2.6.0-cdh5.8.0</hadoop.cdh.version>  
        <!--http client必需要兼容CDH中的hadoop版本(cd /opt/cloudera/parcels/CDH/lib/hadoop/lib)-->  
        <httpclient.version>4.2.5</httpclient.version>  
  
        <!--http copre-->  
        <httpcore.version>4.2.5</httpcore.version>  
        <!--fastjson-->  
        <fastjson.version>1.1.39</fastjson.version>  
  
    </properties>  
  
    <repositories>  
        <repository>  
            <id>scala-tools.org</id>  
            <name>Scala-Tools Maven2 Repository</name>  
            <url>http://scala-tools.org/repo-releases</url>  
        </repository>  
        <!--配置依赖库地址(用于加载CDH依赖的jar包) -->  
        <repository>  
            <id>cloudera</id>  
            <url>https://repository.cloudera.com/artifactory/cloudera-repos/</url>  
        </repository>  
    </repositories>  
  
    <pluginRepositories>  
        <pluginRepository>  
            <id>scala-tools.org</id>  
            <name>Scala-Tools Maven2 Repository</name>  
            <url>http://scala-tools.org/repo-releases</url>  
        </pluginRepository>  
    </pluginRepositories>  
  
    <dependencies>  
  
        <!--fastjson-->  
        <dependency>  
            <groupId>com.alibaba</groupId>  
            <artifactId>fastjson</artifactId>  
            <version>${fastjson.version}</version>  
        </dependency>  
        <!--httpclient-->  
        <dependency>  
            <groupId>org.apache.httpcomponents</groupId>  
            <artifactId>httpclient</artifactId>  
            <version>${httpclient.version}</version>  
        </dependency>  
  
        <!--http core-->  
        <dependency>  
            <groupId>org.apache.httpcomponents</groupId>  
            <artifactId>httpcore</artifactId>  
            <version>${httpcore.version}</version>  
        </dependency>  
  
        <!--slf4j-->  
        <dependency>  
            <groupId>org.slf4j</groupId>  
            <artifactId>slf4j-log4j12</artifactId>  
            <version>${slf4j-version}</version>  
        </dependency>  
        <!--hadoop-->  
        <dependency>  
            <groupId>org.apache.hadoop</groupId>  
            <artifactId>hadoop-client</artifactId>  
            <version>${hadoop.cdh.version}</version>  
            <exclusions>  
                <exclusion>  
                    <groupId>javax.servlet</groupId>  
                    <artifactId>*</artifactId>  
                </exclusion>  
            </exclusions>  
        </dependency>  
        <dependency>  
            <groupId>org.apache.hadoop</groupId>  
            <artifactId>hadoop-common</artifactId>  
            <version>${hadoop.cdh.version}</version>  
            <exclusions>  
                <exclusion>  
                    <groupId>javax.servlet</groupId>  
                    <artifactId>*</artifactId>  
                </exclusion>  
            </exclusions>  
        </dependency>  
        <dependency>  
            <groupId>org.apache.hadoop</groupId>  
            <artifactId>hadoop-hdfs</artifactId>  
            <version>${hadoop.cdh.version}</version>  
            <exclusions>  
                <exclusion>  
                    <groupId>javax.servlet</groupId>  
                    <artifactId>*</artifactId>  
                </exclusion>  
            </exclusions>  
        </dependency>  
        <!--spark scala-->  
        <dependency>  
            <groupId>org.scala-lang</groupId>  
            <artifactId>scala-library</artifactId>  
            <version>${scala.version}</version>  
        </dependency>  
        <dependency>  
            <groupId>com.fasterxml.jackson.core</groupId>  
            <artifactId>jackson-databind</artifactId>  
            <version>${jackson.version}</version>  
        </dependency>  
  
        <!--spark streaming和kafka的相关包-->  
        <dependency>  
            <groupId>org.apache.spark</groupId>  
            <artifactId>spark-streaming_2.10</artifactId>  
            <version>${spark.streaming.cdh.version}</version>  
        </dependency>  
        <dependency>  
            <groupId>org.apache.spark</groupId>  
            <artifactId>spark-streaming-kafka_2.10</artifactId>  
            <version>${kafka.spark.cdh.version}</version>  
        </dependency>  
        <dependency>  
            <groupId>junit</groupId>  
            <artifactId>junit</artifactId>  
            <version>4.12</version>  
            <scope>test</scope>  
        </dependency>  
  
        <!--引入windows本地库的spark包-->  
        <dependency>  
        <groupId>org.apache.spark</groupId>  
        <artifactId>spark-assembly_2.10</artifactId>  
        <version>${spark.cdh.version}</version>  
        <scope>system</scope>  
        <systemPath>D:/crt_send_document/spark-assembly-1.6.0-cdh5.8.0-hadoop2.6.0-cdh5.8.0.jar</systemPath>  
        </dependency>  
  
        <!--引入测试环境linux本地库的spark包-->  
        <!--<dependency>-->  
            <!--<groupId>org.apache.spark</groupId>-->  
            <!--<artifactId>spark-assembly_2.10</artifactId>-->  
            <!--<version>${spark.cdh.version}</version>-->  
            <!--<scope>system</scope>-->  
            <!--<systemPath>/opt/cloudera/parcels/CDH/lib/spark/lib/spark-examples-1.6.0-cdh5.8.0-hadoop2.6.0-cdh5.8.0.jar-->  
            <!--</systemPath>-->  
        <!--</dependency>-->  
  
        <!--引入中央仓库的spark包-->  
        <!--<dependency>-->  
        <!--<groupId>org.apache.spark</groupId>-->  
        <!--<artifactId>spark-assembly_2.10</artifactId>-->  
        <!--<version>${spark.cdh.version}</version>-->  
        <!--</dependency>-->  
  
        <!-- https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-yarn-server-web-proxy -->  
        <dependency>  
            <groupId>org.apache.hadoop</groupId>  
            <artifactId>hadoop-yarn-server-web-proxy</artifactId>  
            <version>2.6.0-cdh5.8.0</version>  
        </dependency>  
  
    </dependencies>  
  
    <!--maven打包-->  
    <build>  
        <finalName>test-my</finalName>  
        <sourceDirectory>src/main/scala</sourceDirectory>  
        <testSourceDirectory>src/test/scala</testSourceDirectory>  
        <plugins>  
            <plugin>  
                <groupId>org.scala-tools</groupId>  
                <artifactId>maven-scala-plugin</artifactId>  
                <version>2.15.2</version>  
                <executions>  
                    <execution>  
                        <goals>  
                            <goal>compile</goal>  
                            <goal>testCompile</goal>  
                        </goals>  
                    </execution>  
                </executions>  
                <configuration>  
                    <scalaVersion>${scala.version}</scalaVersion>  
                    <args>  
                        <arg>-target:jvm-1.7</arg>  
                    </args>  
                </configuration>  
            </plugin>  
            <plugin>  
                <groupId>org.apache.maven.plugins</groupId>  
                <artifactId>maven-eclipse-plugin</artifactId>  
                <configuration>  
                    <downloadSources>true</downloadSources>  
                    <buildcommands>  
                        <buildcommand>ch.epfl.lamp.sdt.core.scalabuilder</buildcommand>  
                    </buildcommands>  
                    <additionalProjectnatures>  
                        <projectnature>ch.epfl.lamp.sdt.core.scalanature</projectnature>  
                    </additionalProjectnatures>  
                    <classpathContainers>  
                        <classpathContainer>org.eclipse.jdt.launching.JRE_CONTAINER</classpathContainer>  
                        <classpathContainer>ch.epfl.lamp.sdt.launching.SCALA_CONTAINER</classpathContainer>  
                    </classpathContainers>  
                </configuration>  
            </plugin>  
            <plugin>  
                <artifactId>maven-assembly-plugin</artifactId>  
                <configuration>  
                    <descriptorRefs>  
                        <descriptorRef>jar-with-dependencies</descriptorRef>  
                    </descriptorRefs>  
                    <archive>  
                        <manifest>  
                            <mainClass></mainClass>  
                        </manifest>  
                    </archive>  
                </configuration>  
                <executions>  
                    <execution>  
                        <id>make-assembly</id>  
                        <phase>package</phase>  
                        <goals>  
                            <goal>single</goal>  
                        </goals>  
                    </execution>  
                </executions>  
            </plugin>  
        </plugins>  
    </build>  
    <reporting>  
        <plugins>  
            <plugin>  
                <groupId>org.scala-tools</groupId>  
                <artifactId>maven-scala-plugin</artifactId>  
                <configuration>  
                    <scalaVersion>${scala.version}</scalaVersion>  
                </configuration>  
            </plugin>  
        </plugins>  
    </reporting>  
  
</project>  

 2、新建测试类
[java] view plain copy
import kafka.common.TopicAndPartition  
import kafka.message.MessageAndMetadata  
import kafka.serializer.StringDecoder  
import org.apache.log4j.{Level, Logger}  
import org.apache.spark.{SparkConf, TaskContext}  
import org.apache.spark.streaming.dstream.InputDStream  
import org.apache.spark.streaming.kafka.{HasOffsetRanges, KafkaUtils, OffsetRange}  
import org.apache.spark.streaming.{Seconds, StreamingContext}  
import org.slf4j.LoggerFactory  
  
/** 
  * Created by yangjf on 2016/12/18 
  * Update date: 
  * Time: 11:10 
  * Describle :从指定偏移量读取kafka数据 
  * Result of Test: 
  * Command: 
  * Email: [email protected] 
  */  
object ReadBySureOffsetTest {  
  val logger = LoggerFactory.getLogger(ReadBySureOffsetTest.getClass)  
  
  def main(args: Array[String]) {  
    //设置打印日志级别  
    Logger.getLogger("org.apache.kafka").setLevel(Level.ERROR)  
    Logger.getLogger("org.apache.zookeeper").setLevel(Level.ERROR)  
    Logger.getLogger("org.apache.spark").setLevel(Level.ERROR)  
    logger.info("测试从指定offset消费kafka的主程序开始")  
    if (args.length < 1) {  
      System.err.println("Your arguments were " + args.mkString(","))  
      System.exit(1)  
      logger.info("主程序意外退出")  
    }  
    //hdfs://hadoop1:8020/user/root/spark/checkpoint  
    val Array(checkpointDirectory) = args  
    logger.info("checkpoint检查:" + checkpointDirectory)  
    val ssc = StreamingContext.getOrCreate(checkpointDirectory,  
      () => {  
        createContext(checkpointDirectory)  
      })  
    logger.info("streaming开始启动")  
    ssc.start()  
    ssc.awaitTermination()  
  }  
  
  def createContext(checkpointDirectory: String): StreamingContext = {  
    //获取配置  
    val brokers = "hadoop3:9092,hadoop4:9092"  
    val topics = "20161218a"  
  
    //默认为5秒  
    val split_rdd_time = 8  
    // 创建上下文  
    val sparkConf = new SparkConf()  
      .setAppName("SendSampleKafkaDataToApple").setMaster("local[2]")  
      .set("spark.app.id", "streaming_kafka")  
  
    val ssc = new StreamingContext(sparkConf, Seconds(split_rdd_time))  
  
    ssc.checkpoint(checkpointDirectory)  
  
    // 创建包含brokers和topic的直接kafka流  
    val topicsSet: Set[String] = topics.split(",").toSet  
    //kafka配置参数  
    val kafkaParams: Map[String, String] = Map[String, String](  
      "metadata.broker.list" -> brokers,  
      "group.id" -> "apple_sample",  
      "serializer.class" -> "kafka.serializer.StringEncoder"  
//      "auto.offset.reset" -> "largest"   //自动将偏移重置为最新偏移(默认)  
//      "auto.offset.reset" -> "earliest"  //自动将偏移重置为最早的偏移  
//      "auto.offset.reset" -> "none"      //如果没有为消费者组找到以前的偏移,则向消费者抛出异常  
    )  
    /** 
      * 从指定位置开始读取kakfa数据 
      * 注意:由于Exactly  Once的机制,所以任何情况下,数据只会被消费一次! 
      *      指定了开始的offset后,将会从上一次Streaming程序停止处,开始读取kafka数据 
      */  
    val offsetList = List((topics, 0, 22753623L),(topics, 1, 327041L))                          //指定topic,partition_no,offset  
    val fromOffsets = setFromOffsets(offsetList)     //构建参数  
    val messageHandler = (mam: MessageAndMetadata[String, String]) => (mam.topic, mam.message()) //构建MessageAndMetadata  
   //使用高级API从指定的offset开始消费,欲了解详情,  
   //请进入"http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.streaming.kafka.KafkaUtils$"查看  
    val messages: InputDStream[(String, String)] = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder, (String, String)](ssc, kafkaParams, fromOffsets, messageHandler)  
  
    //数据操作  
    messages.foreachRDD(mess => {  
      //获取offset集合  
      val offsetsList = mess.asInstanceOf[HasOffsetRanges].offsetRanges  
      mess.foreachPartition(lines => {  
        lines.foreach(line => {  
          val o: OffsetRange = offsetsList(TaskContext.get.partitionId)  
          logger.info("++++++++++++++++++++++++++++++此处记录offset+++++++++++++++++++++++++++++++++++++++")  
          logger.info(s"${o.topic}  ${o.partition}  ${o.fromOffset}  ${o.untilOffset}")  
          logger.info("+++++++++++++++++++++++++++++++此处消费数据操作++++++++++++++++++++++++++++++++++++++")  
          logger.info("The kafka  line is " + line)  
        })  
      })  
    })  
    ssc  
  }  
  
  //构建Map  
  def setFromOffsets(list: List[(String, Int, Long)]): Map[TopicAndPartition, Long] = {  
    var fromOffsets: Map[TopicAndPartition, Long] = Map()  
    for (offset <- list) {  
      val tp = TopicAndPartition(offset._1, offset._2)//topic和分区数  
      fromOffsets += (tp -> offset._3)           // offset位置  
    }  
    fromOffsets  
  }  
}  

四、参考文档:
    1、spark API  http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.streaming.kafka.KafkaUtils$
    2、Kafka官方配置说明:http://kafka.apache.org/documentation.html#configuration
    3、Kafka SampleConsumer:https://cwiki.apache.org/confluence/display/KAFKA/0.8.0+SimpleConsumer+Example
    4、Spark streaming 消费遍历offset说明:http://spark.apache.org/docs/1.6.0/streaming-kafka-integration.html
    5、Kafka官方API说明:http://kafka.apache.org/090/javadoc/index.html?org/apache/kafka/clients/consumer/KafkaConsumer.html
注:以上测试通过,可以根据需要修改。如有疑问,请留言!

 

以上是关于spark streaming从指定offset处消费Kafka数据的主要内容,如果未能解决你的问题,请参考以下文章

经典篇 | Spark Streaming 中管理 Kafka Offsets 的几种方式

Offset Management For Apache Kafka With Apache Spark Streaming

spark streaming璇诲彇kakfka鏁版嵁鎵嬪姩缁存姢offset

Spark Streaming和Kafka集成深入浅出

Spark createDirectStream 维护 Kafka offset(Scala)

实战Spark streaming与kafka