Levenshtein Distance莱文斯坦距离算法来计算字符串的相似度
Posted 比较大的小仙女
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Levenshtein Distance莱文斯坦距离算法来计算字符串的相似度相关的知识,希望对你有一定的参考价值。
Levenshtein Distance莱文斯坦距离定义:
数学上,两个字符串a、b之间的莱文斯坦距离表示为levab(|a|, |b|)。
levab(i, j) = max(i, j) 如果min(i, j) = 0;
= min(levab(i - 1, j) + 1, levab(i, j-1) + 1, levab(i - 1, j - 1) + 1) (ai != bj)
否则其中ai != bj 是指示函数,当ai != bj 时为1, 否则为0。
核心公式就是下面:
(1)
转
1.百度百科介绍:
Levenshtein 距离,又称编辑距离,指的是两个字符串之间,由一个转换成另一个所需的最少编辑操作次数。
许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。
编辑距离的算法是首先由俄国科学家Levenshtein提出的,故又叫Levenshtein Distance。
2.用途
模糊查询
3.实现过程
a.首先是有两个字符串,这里写一个简单的 abc和abe
b.将字符串想象成下面的结构。
A处 是一个标记,为了方便讲解,不是这个表的内容。
abc | a | b | c | |
abe | 0 | 1 | 2 | 3 |
a | 1 | A处 | ||
b | 2 | |||
e | 3 |
c.来计算A处 出得值
它的值取决于:左边的1、上边的1、左上角的0.
按照Levenshtein distance的意思:
上面的值和左面的值都要求加1,这样得到1+1=2。
A处 由于是两个a相同,左上角的值加0.这样得到0+0=0。
这是后有三个值,左边的计算后为2,上边的计算后为2,左上角的计算为0,所以A处 取他们里面最小的0.
d.于是表成为下面的样子
abc | a | b | c | |
abe | 0 | 1 | 2 | 3 |
a | 1 | 0 | ||
b | 2 | B处 | ||
e | 3 |
在B处 会同样得到三个值,左边计算后为3,上边计算后为1,在B处 由于对应的字符为a、b,不相等,所以左上角应该在当前值的基础上加1,这样得到1+1=2,在(3,1,2)中选出最小的为B处的值。
e.于是表就更新了
abc | a | b | c | |
abe | 0 | 1 | 2 | 3 |
a | 1 | 0 | ||
b | 2 | 1 | ||
e | 3 | C处 |
C处 计算后:上面的值为2,左边的值为4,左上角的:a和e不相同,所以加1,即2+1,左上角的为3。
在(2,4,3)中取最小的为C处 的值。
f.于是依次推得到
a | b | c | ||
0 | 1 | 2 | 3 | |
a | 1 | A处 0 | D处 1 | G处 2 |
b | 2 | B处 1 | E处 0 | H处 1 |
e | 3 | C处 2 | F处 1 | I处 1 |
I处: 表示abc 和abe 有1个需要编辑的操作。这个是需要计算出来的。
同时,也获得一些额外的信息。
A处: 表示a 和a 需要有0个操作。字符串一样
B处: 表示ab 和a 需要有1个操作。
C处: 表示abe 和a 需要有2个操作。
D处: 表示a 和ab 需要有1个操作。
E处: 表示ab 和ab 需要有0个操作。字符串一样
F处: 表示abe 和ab 需要有1个操作。
G处: 表示a 和abc 需要有2个操作。
H处: 表示ab 和abc 需要有1个操作。
I处: 表示abe 和abc 需要有1个操作。
g.计算相似度
先取两个字符串长度的最大值maxLen,用 1-(需要操作数/maxLen),得到相似度。
例如abc 和abe 一个操作,长度为3,所以相似度为1-1/3=0.666。
4.代码实现
直接能运行, 复制过去就行。
5.猜测原理
为什么这样就能算出相似度了?
首先在连续相等的字符就可以考虑到
红色是取值的顺序。
1.今天周一 天周一
天 | 周 | 一 | ||
0 | 1 | 2 | 3 | |
今 | 1 | 1 | 2 | 3 |
天 | 2 | 1 | 2 | 3 |
周 | 3 | 2 | 1 | 3 |
一 | 4 | 3 | 3 | 1 |
实现是去掉“今”,一步完成。
2.听说马上就要放假了 你听说要放假了
你 | 听 | 说 | 要 | 放 | 假 | 了 | ||
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
听 | 1 | 1 | 1 | 2 | 3 | 4 | 5 | 6 |
说 | 2 | 2 | 2 | 1 | 2 | 3 | 4 | 5 |
马 | 3 | 3 | 3 | 2 | 2 | 3 | 4 | 5 |
上 | 4 | 4 | 4 | 3 | 3 | 3 | 4 | 5 |
就 | 5 | 5 | 5 | 4 | 4 | 4 | 4 | 5 |
要 | 6 | 6 | 6 | 5 | 4 | 5 | 5 | 5 |
放 | 7 | 7 | 7 | 6 | 5 | 4 | 5 | 6 |
假 | 8 | 8 | 8 | 7 | 6 | 5 | 4 | 6 |
了 | 9 | 9 | 9 | 8 | 7 | 6 | 6 | 4 |
这两个字符串是:
去掉“你”,加上“马上就”,总共四步操作。
以上是关于Levenshtein Distance莱文斯坦距离算法来计算字符串的相似度的主要内容,如果未能解决你的问题,请参考以下文章
最喜欢的算法(们) - Levenshtein distance
Damerau–Levenshtein distance (Edit Distance with Transposition) c 实现