Gym 101190H Hard Refactoring (模拟坑题)
Posted dwtfukgv
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Gym 101190H Hard Refactoring (模拟坑题)相关的知识,希望对你有一定的参考价值。
题意:给定 n 个区间,让你进行合并,问你最后的区间是,如果是空集,输出 false 如果区间是是 [-32768,32767] ,则是true。
析:进行区间合并,要注意,如果是 x >= 0 && x <= 32767 那么输出是 x >= 0,在这地方,真是错死了。。。。。。后来看了数据才知道有这个,其他的就是进行区间合并,如果第 i 个和第 j 个区间合并时,假设 x >= a && x <= b || x >= c && x <= d,那么如果 b+1 >= c && a <= c || d+1 >= a && c <= a 就进行合并,当然对于单向的就进行一个标记左端点是-32768右端点是32767,也就是最后在输出。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #include <assert.h> #include <bitset> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define fi first #define se second #define pb push_back #define sqr(x) ((x)*(x)) #define ms(a,b) memset(a, b, sizeof a) #define sz size() #define pu push_up #define pd push_down #define cl clear() #define all 1,n,1 #define FOR(x,n) for(int i = (x); i < (n); ++i) #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e15; const double inf = 1e20; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1000 + 500; const LL mod = 1e9 + 7; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c) { return r >= 0 && r < n && c >= 0 && c < m; } struct Node{ int small, big; bool flag; }; Node a[maxn]; int clac(const string &s){ int ans = 0; int sig = s[0] == ‘-‘ ? -1 : 1; ans = s[0] == ‘-‘ ? 0 : s[0] - ‘0‘; for(int i = 1; i < s.sz; ++i) ans = ans * 10 + s[i] - ‘0‘; return ans * sig; } vector<Node> ans; int main(){ freopen("hard.in", "r", stdin); freopen("hard.out", "w", stdout); string s; int idx = 0; while(getline(cin, s)){ a[idx].flag = 0; if(s[2] == ‘>‘){ stringstream ss(s); string t; ss >> t; ss >> t; ss >> t; a[idx].big = clac(t); if((ss >> t)) { if(t == "||") a[idx].small = 32767; else{ ss >> t >> t; ss >> t; a[idx].small = clac(t); } } else a[idx].small = 32767; } else{ stringstream ss(s); string t; ss >> t; ss >> t; ss >> t; a[idx].small = clac(t); a[idx].big = -32768; } if(a[idx].big < -32768 || a[idx].small > 32767) a[idx].flag = 1; ++idx; } bool ok = false; for(int i = 0; i < idx; ++i){ if(a[i].small >= a[i].big){ ok = true; } } if(!ok){ puts("false"); return 0; } for(int k = 0; k < 10; ++k) for(int i = 0; i < idx; ++i){ if(a[i].small < a[i].big) a[i].flag = 1; if(a[i].flag) continue; for(int j = 0; j < idx; ++j){ if(a[j].small < a[j].big) a[j].flag = 1; if(i == j) continue; if(a[j].flag) continue; if(a[i].big <= a[j].small+1 && a[i].small >= a[j].small || a[j].big <= a[i].small+1 && a[i].small <= a[j].small){ a[i].small = max(a[i].small, a[j].small); a[i].big = min(a[i].big, a[j].big); a[j].flag = 1; } } } for(int i = 0; i < idx; ++i) if(!a[i].flag) ans.pb(a[i]); if(ans[0].small == 32767 && ans[0].big == -32768) puts("true"); else { for(int i = 0; i < ans.sz; ++i){ if(ans[i].big > -32768){ printf("x >= %d", ans[i].big); if(ans[i].small < 32767) printf(" && x <= %d", ans[i].small); } else printf("x <= %d", ans[i].small); if(i != ans.sz-1) printf(" ||"); puts(""); } } return 0; }
以上是关于Gym 101190H Hard Refactoring (模拟坑题)的主要内容,如果未能解决你的问题,请参考以下文章
[React] Refactor componentWillReceiveProps() to getDerivedStateFromProps() in React 16.3
[React] Refactor a connected Redux component to use Unstated
[React] Refactor a Class Component with React hooks to a Function