二叉树操作复习
Posted pprp
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了二叉树操作复习相关的知识,希望对你有一定的参考价值。
2017-08-29 11:46:37
writer:pprp
已经写了二叉树好几次了,但是还是有很多细节没有考虑完全
还有好多东西都没有考虑到,以后还是要写这个代码,把应该考虑的细节都考虑清楚
代码及讲解如下:(都测试过了,应该没问题,如果有问题请留言)
/*
@theme:树的建立和遍历
@writer:pprp
@start:10:00
@end:11:47
@declare:我建立的这个树好像跟教科书上的树方向反了一下,
但是不影响理解,教科书上的是大的在右边,小的在左边,我的恰好反了过来
@date:2017/8/28
*/
#include <bits/stdc++.h>
using namespace std;
struct tree
{
int val;
tree * l;
tree * r;
};
//function 1 insert
//插入操作,比根节点大的要在左子树,比根节点小的要放在右子树
//test:ok
tree * Insert(tree *root, int val)
{
tree * parent;
tree * current;
tree * newVal = new tree();
newVal->val = val;
newVal->r = NULL;
newVal->l = NULL;
if(root == NULL)
{
root = newVal;
}
else
{
current = root;
while(current != NULL)
{
parent = current;
if(current->val < val)//这里的符号要与下边的符号一致
{
current = current->l;
}
else
{
current = current->r;
}
}
if(parent->val < val) //这里的符号要跟上边的符号一致
{
parent->l = newVal;
}
else
{
parent->r = newVal;
}
}
return root;
}
//function 2: MakeEmpty
//test: ok
tree* MakeEmpty(tree * root)
{
if(root != NULL)
{
MakeEmpty(root->r);
MakeEmpty(root->l);
delete root;
root = NULL;
}
return NULL;
}
//function 3: Find value
//test:ok
//@param:返回一个指针,代表找到该节点的指针,否则返回NULL
tree* FindValue(tree * root,int val)
{
if(root == NULL)
return NULL;
if(val < root->val)
return FindValue(root->r,val);
else if(val > root->val)
return FindValue(root->l,val);
else
return root;
}
//function 4:Find Min
//由于树的构造是有大小之分的所以找小的直接向有子树找就好
//test:ok
tree* FindMin(tree * root)
{
if(root == NULL)
return NULL;
else if(root->r == NULL)
return root;
else
return FindMin(root->r);
}
//function 5: Find Max
//直接向右子树查找就好了
//test:ok
tree * FindMax(tree * root)
{
if(root == NULL)
return NULL;
else if(root->l == NULL)
return root;
else
return FindMax(root->l);
}
////function 6: delete
////test:error
////错误原因:思路不大对,如果只有一个子节点的情况,还需要判断这个本身是左边子节点还是右边子节点
//tree * Delete(tree * root, int val)
//{
// tree * current = FindValue(root, val);
// tree * tmp = NULL;
// if(current->l == NULL && current->r == NULL) //如果两个孩子都没有就可以直接删除掉
// {
// delete(current);
// }
// else if(current != NULL) //只有左孩子,将左孩子中最小的值变成原先节点
// {
// tmp = FindMin(current);
// current->val = tmp->val;
// delete(tmp);
// tmp = NULL;
// }
// else if(current->r != NULL) //只有右孩子
// {
// tmp = FindMax(current);
// current->val = tmp->val;
// delete(tmp);
// tmp = NULL;
// }
// else //两个孩子都有
// {
// tmp = FindMin(current);
// current->val = tmp->val;
// delete(tmp);
// tmp = NULL;
// }
//}
//function 6: delete
//test:ok
//要删除的节点值为val,最后返回已经修改过的头结点
tree * Delete(tree * root, int val)
{
tree * par;
tree * kid;
//第一部分找到该节点并找到该节点的父亲节点
kid = root;
while(kid != NULL)
{
if(kid->val > val)
{
par = kid;
kid = kid->r;
}
else if(kid->val < val)
{
par = kid;
kid = kid->l;
}
else if(kid->val == val)
{
break; //这时候kid指向的是要找的节点 par记录的是要找的节点的父亲节点
}
}
//没有找到的情况
if(kid == NULL)
{
cout << "not find! " << endl;
return NULL;
}
//现在开始判断是那种情况
//1、如果是都是为空的情况
if(kid->l == NULL && kid->r == NULL)
{
if(kid == root) //没有想到,如果是根节点,那么就直接赋值根节点为空
root = NULL;
if(par->l == kid)
par->l = NULL;
if(par->r == kid)
par->r = NULL;
delete(kid);
}//2、只有一个节点的情况
else if(kid->l == NULL || kid->r == NULL)
{
if(kid == root)
{
if(kid->r == NULL)
root = kid->l;
else
root = kid->r;
delete(root);
}
else //分情况讨论
{
if(par->r == kid && kid->l)
{
par->r = kid->l;
}
else if(par->r == kid && kid->r)
{
par->r = kid->r;
}
else if(par->l == kid && kid->l)
{
par->l = kid->l;
}
else if(par->l == kid && kid->r)
{
par->l = kid->r;
}
delete(kid);
}
} //3、有两个子节点的情况,这里采用将左边最小的替换找到节点的方案
else
{
tree * tmp = FindMin(kid);
kid->val = tmp->val;
delete(tmp);
}
return root;
}
//前序遍历输出 -- ok
void preOut(tree * root)
{
if(root != NULL)
{
cout << root->val <<" ";
preOut(root->l);
preOut(root->r);
}
}
//中序遍历输出--ok
void midOut(tree * root)
{
if(root != NULL)
{
midOut(root->l);
cout << root->val << " ";
midOut(root->r);
}
}
//后序遍历输出--ok
void backOut(tree * root)
{
if(root != NULL)
{
backOut(root->l);
backOut(root->r);
cout << root->val << " ";
}
}
int main()
{
int n;
cin >> n;
int a[100];
tree * root = NULL;
for(int i = 0 ; i < n ; i++)
{
srand((int)time(NULL)+i);
a[i] = rand()%100;
}
for(int i = 0 ; i < n ; i++)
cout << a[i] <<" ";
cout << endl;
//create a tree
for(int i = 0 ; i < n ; i++)
{
root = Insert(root, a[i]);
}
cout << "preOut:" << endl;
preOut(root);
cout << endl;
// root = MakeEmpty(root);
// cout << "preOut:" << endl;
// backOut(root);
// cout << endl;
// int val;
// cin >> val;
// tree * tmp = FindValue(root,val);
// if(tmp != NULL)
// cout << tmp->val << endl;
tree * tmp = FindMax(root);
if(tmp != NULL)
cout << tmp->val << endl;
tmp = FindMin(root);
if(tmp != NULL)
cout << tmp->val << endl;
cout << "-----" << endl;
int val;
cin >> val;
root = Delete(root,val);
cout << "preOut:" << endl;
preOut(root);
cout << endl;
return 0;
}
以上是关于二叉树操作复习的主要内容,如果未能解决你的问题,请参考以下文章