RMQ问题 - ST表的简单应用
Posted pprp
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了RMQ问题 - ST表的简单应用相关的知识,希望对你有一定的参考价值。
2017-08-26 22:25:57
writer:pprp
题意很简单,给你一串数字,问你给定区间中最大值减去给定区间中的最小值是多少?
用ST表即可实现
一开始无脑套模板,找了最大值,找了最小值,分别用两个函数实现,实际上十分冗余
所以TLE了
之后改成一个函数中同时处理最大值和最小值,就可以了
AC代码如下:
/* @theme:poj 3264 @writer:pprp @declare:ST表(sparse table)稀疏表,用动态规划的思想来解决RMQ问题; @date:2017/8/26 */ //#include <bits/stdc++.h> #include <iostream> #include <cmath> #include <cstdio> #include <cstdlib> #define IOS ios::sync_with_stdio(false),cin.tie(0); using namespace std; const int maxn = 50050; int F1[maxn][20]; int F2[maxn][20]; int a[maxn]; void SparseTable(int a[], int len) { //初始化 for(int i = 0 ; i < len ; i++) { F1[i][0] = a[i]; F2[i][0] = a[i]; } //递推 //找到j的范围log2(n) int nlog = int(log(double(len))/log(2.0)); for(int j = 1 ; j <= nlog; j++) { for(int i = 0 ; i < len ; i++) { //区间右端点不能超过数组最后一位下标 if((i + (1 << j) -1) < len ) { F1[i][j] = min(F1[i][j - 1],F1[i + (1 << (j - 1))][j - 1]); F2[i][j] = max(F2[i][j - 1],F2[i + (1 << (j - 1))][j - 1]); } } } } int main() { int N, Q; int l, r; scanf("%d %d",&N,&Q); for(int i = 0 ; i < N ; i++) { scanf("%d",&a[i]); } SparseTable(a,N); for(int i = 0 ; i < Q ; i++) { scanf("%d %d",&l,&r); l--; r--; double len = r - l + 1; int m = (int)(log(len)/log(2.0)); int mmx = max(F2[l][m],F2[r-(1<<m)+1][m]); int mmn = min(F1[l][m],F1[r-(1<<m)+1][m]); printf("%d\n",mmx-mmn); } return 0; }
以上是关于RMQ问题 - ST表的简单应用的主要内容,如果未能解决你的问题,请参考以下文章