使用索贝尔(Sobel)进行梯度运算时的数学意义和代码实现研究
Posted GreenOpen专注图像处理
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了使用索贝尔(Sobel)进行梯度运算时的数学意义和代码实现研究相关的知识,希望对你有一定的参考价值。
对于做图像处理的工程师来说,Sobel非常熟悉且常用。但是当我们需要使用Sobel进行梯度运算,且希望得到“数学结果”(作为下一步运算的基础)而不是“图片效果”的时候,就必须深入了解Sobel的知识原理和OpenCV实现的细节(当然我们是OpenCV支持则)。这里对具体内容进行研究。
一、基本原理
一般来说,用来表示微分的最常用的算子是索贝尔(Sobel)算子,它可以实现任意阶导数和混合偏导数(例如: ∂2/∂x∂y)。
在x方向上用Sobel算子进行近似一阶求导的结果
Sobel算子效果,y方向近似一阶导数
OpenCV中给出了函数使用的定义
void cv::Sobel(
cv::InputArray src, // 源图像
cv::OutputArray dst, // 目标图像
int ddepth, // 像素深度 (如CV_8U)
int xorder, // x方向对应的倒数顺序
int yorder, // y方向对应的倒数顺序
cv::Size ksize = 3, // 核大小
double scale = 1, // 阈值
double delta = 0, // 偏移
int borderType = cv::BORDER_DEFAULT // 边框外推方法
);
cv::InputArray src, // 源图像
cv::OutputArray dst, // 目标图像
int ddepth, // 像素深度 (如CV_8U)
int xorder, // x方向对应的倒数顺序
int yorder, // y方向对应的倒数顺序
cv::Size ksize = 3, // 核大小
double scale = 1, // 阈值
double delta = 0, // 偏移
int borderType = cv::BORDER_DEFAULT // 边框外推方法
);
1、其中src和dst是源图像和目标图像,可以通过指明参数ddepth来确定目标图像的深度或类型(如CV_32F)。举个例子,如果src是一幅8位图像,那么dst需要至少CV_16S的深度保证不出现溢出;
2、xorder和yorder是求导顺序,其取值范围为0、1和2。0表示在这个方向上不进行求导,那2代表什么?
3、ksize是一个奇数,表示了调用的滤波器的宽和高,目前最大支持到31;
4、阈值和偏移将在把结果存入dst前调用,这有助于你将求导结果可视化.borderType参数的功能与其他卷积操作完全一样。
上面有一个遗留问题,就是xorder(yorder)取2的时候代表什么?为此翻阅OpenCV源码
step1
step 2
step3
static void getSobelKernels( OutputArray _kx, OutputArray _ky,
int dx, int dy, int _ksize, bool normalize, int ktype )
{
int i, j, ksizeX = _ksize, ksizeY = _ksize;
if( ksizeX == 1 && dx > 0 )
ksizeX = 3;
if( ksizeY == 1 && dy > 0 )
ksizeY = 3;
CV_Assert( ktype == CV_32F || ktype == CV_64F );
_kx.create(ksizeX, 1, ktype, -1, true);
_ky.create(ksizeY, 1, ktype, -1, true);
Mat kx = _kx.getMat();
Mat ky = _ky.getMat();
if( _ksize % 2 == 0 || _ksize > 31 )
CV_Error( CV_StsOutOfRange, "The kernel size must be odd and not larger than 31" );
std::vector<int> kerI(std::max(ksizeX, ksizeY) + 1);
CV_Assert( dx >= 0 && dy >= 0 && dx+dy > 0 );
for( int k = 0; k < 2; k++ )
{
Mat* kernel = k == 0 ? &kx : &ky;
int order = k == 0 ? dx : dy;
int ksize = k == 0 ? ksizeX : ksizeY;
CV_Assert( ksize > order );
if( ksize == 1 )
kerI[0] = 1;
else if( ksize == 3 )
{
if( order == 0 )
kerI[0] = 1, kerI[1] = 2, kerI[2] = 1;
else if( order == 1 )
kerI[0] = -1, kerI[1] = 0, kerI[2] = 1;
else
kerI[0] = 1, kerI[1] = -2, kerI[2] = 1;
}
else
{
int oldval, newval;
kerI[0] = 1;
for( i = 0; i < ksize; i++ )
kerI[i+1] = 0;
for( i = 0; i < ksize - order - 1; i++ )
{
oldval = kerI[0];
for( j = 1; j <= ksize; j++ )
{
newval = kerI[j]+kerI[j-1];
kerI[j-1] = oldval;
oldval = newval;
}
}
for( i = 0; i < order; i++ )
{
oldval = -kerI[0];
for( j = 1; j <= ksize; j++ )
{
newval = kerI[j-1] - kerI[j];
kerI[j-1] = oldval;
oldval = newval;
}
}
}
Mat temp(kernel->rows, kernel->cols, CV_32S, &kerI[0]);
double scale = !normalize ? 1. : 1./(1 << (ksize-order-1Canny边缘检测算法
int dx, int dy, int _ksize, bool normalize, int ktype )
{
int i, j, ksizeX = _ksize, ksizeY = _ksize;
if( ksizeX == 1 && dx > 0 )
ksizeX = 3;
if( ksizeY == 1 && dy > 0 )
ksizeY = 3;
CV_Assert( ktype == CV_32F || ktype == CV_64F );
_kx.create(ksizeX, 1, ktype, -1, true);
_ky.create(ksizeY, 1, ktype, -1, true);
Mat kx = _kx.getMat();
Mat ky = _ky.getMat();
if( _ksize % 2 == 0 || _ksize > 31 )
CV_Error( CV_StsOutOfRange, "The kernel size must be odd and not larger than 31" );
std::vector<int> kerI(std::max(ksizeX, ksizeY) + 1);
CV_Assert( dx >= 0 && dy >= 0 && dx+dy > 0 );
for( int k = 0; k < 2; k++ )
{
Mat* kernel = k == 0 ? &kx : &ky;
int order = k == 0 ? dx : dy;
int ksize = k == 0 ? ksizeX : ksizeY;
CV_Assert( ksize > order );
if( ksize == 1 )
kerI[0] = 1;
else if( ksize == 3 )
{
if( order == 0 )
kerI[0] = 1, kerI[1] = 2, kerI[2] = 1;
else if( order == 1 )
kerI[0] = -1, kerI[1] = 0, kerI[2] = 1;
else
kerI[0] = 1, kerI[1] = -2, kerI[2] = 1;
}
else
{
int oldval, newval;
kerI[0] = 1;
for( i = 0; i < ksize; i++ )
kerI[i+1] = 0;
for( i = 0; i < ksize - order - 1; i++ )
{
oldval = kerI[0];
for( j = 1; j <= ksize; j++ )
{
newval = kerI[j]+kerI[j-1];
kerI[j-1] = oldval;
oldval = newval;
}
}
for( i = 0; i < order; i++ )
{
oldval = -kerI[0];
for( j = 1; j <= ksize; j++ )
{
newval = kerI[j-1] - kerI[j];
kerI[j-1] = oldval;
oldval = newval;
}
}
}
Mat temp(kernel->rows, kernel->cols, CV_32S, &kerI[0]);
double scale = !normalize ? 1. : 1./(1 << (ksize-order-1Canny边缘检测算法