RDD的缓存,依赖,spark提交任务流程

Posted 卡丽熙

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了RDD的缓存,依赖,spark提交任务流程相关的知识,希望对你有一定的参考价值。

1.RDD的缓存

Spark速度非常快的原因之一,就是在不同操作中可以在内存中持久化或缓存个数据集。当持久化某个RDD后,每一个节点都将把计算的分片结果保存在内存中,并在对此RDD或衍生出的RDD进行的其他动作中重用。这使得后续的动作变得更加迅速。RDD相关的持久化和缓存,是Spark最重要的特征之一。可以说,缓存是Spark构建迭代式算法和快速交互式查询的关键。

RDD缓存方式

RDD通过persist方法或cache方法可以将前面的计算结果缓存,但是并不是这两个方法被调用时立即缓存,而是触发后面的action时,该RDD将会被缓存在计算节点的内存中,并供后面重用。

通过查看源码发现cache最终也是调用了persist方法,默认的存储级别都是仅在内存存储一份,Spark的存储级别还有好多种,存储级别在object StorageLevel中定义的。

 

缓存有可能丢失,或者存储存储于内存的数据由于内存不足而被删除,RDD的缓存容错机制保证了即使缓存丢失也能保证计算的正确执行。通过基于RDD的一系列转换,丢失的数据会被重算,由于RDD的各个Partition是相对独立的,因此只需要计算丢失的部分即可,并不需要重算全部Partition。

2.Sprak提交任务流程

DAG:有向无环图(代表数据流向)

DAGScheduler:将DAG图划分为一个个的stage,然后以taskset的方式提交

wordcount 切分stage的流程(两个stage)

 stage,依赖的划分

RDD和它依赖的父RDD(s)的关系有两种不同的类型,即窄依赖(narrow dependency)和宽依赖(wide dependency)。

窄依赖

窄依赖指的是每一个父RDD的Partition最多被子RDD的一个Partition使用,如map方法应用是对每个分区的数据进行处理

宽依赖

宽依赖指的是多个子RDD的Partition会依赖同一个父RDD的Partition

 

 

 

 

以上是关于RDD的缓存,依赖,spark提交任务流程的主要内容,如果未能解决你的问题,请参考以下文章

Spark任务流程笔记

Spark-序列化依赖关系持久化

spark stage

Spark 资源调度 与 任务调度

Spark提交流程

Spark核心RDD什么是RDDRDD的属性创建RDDRDD的依赖以及缓存