Luogu T9376 区间GCD

Posted 青石巷

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Luogu T9376 区间GCD相关的知识,希望对你有一定的参考价值。

题目背景

题目描述

给定一长度为n的动态序列,请编写一种数据结构,要求支持m次操作,包括查询序列中一闭区间中所有数的GCD,与对一闭区间中所有数加上或减去一个值。

输入输出格式

输入格式:

 

第1行两个数n,m,表示序列长度和操作次数。

第2行n个数ai,表示给定序列。

第3行至第m+2行,每行3~4个数:

(1) 1 x y k 表示将[x,y]上的所有数加上k。

(2) 2 x y 表示询问[x,y]上所有数的GCD。

 

输出格式:

 

对所有操作2,输出一个数,表示询问结果。

 

输入输出样例

输入样例#1:
7 3
4 8 2 6 5 7 10
2 1 4
1 2 3 7
2 2 3
输出样例#1:
2
3

说明

定义:a,b∈Z时,gcd(a,b)=gcd(abs(a),abs(b))

对于30%的数据,n,m<=1000。

对于90%的数据,n,m<=100000。

对于100%的数据,n,m<=200000,ai<=1e7(初始),abs(k)<=1e7。

 

 

题解:

如果题目要求改为只支持区间查询,那么线段树或ST表都可以很方便地实现。进一步思考,区间修改无法用普通线段树实现的根本原因在于对[l,r]修改后[l,r]的结果无法O(1)计算出来。
如果区间修改改为单点修改,则可以用线段树暴力log(n)修改。

此处证明一个引理:gcd(a1,a2,a3,...,ai)=gcd(a1,a2-a1,a3-a2,...ai-ai-1).
设S为ai的公因数集合,T为ai-ai-1的公因数集合
设p为ai的任意一个公因数,则有p|ai,由整除的性质知p|ai-ai-1,则p一定是ai-ai-1的公因数,所以S是T的子集。
同理,设q为ai-ai-1的任意一个公因数,运用同样的性质可知q一定是ai的公因数,所以T是S的子集。
综上,S=T,所以max{S}=max{T},即gcd(a1,a2,a3,...,ai)=gcd(a1,a2-a1,a3-a2,...ai-ai-1).

所以我们将原数组a进行差分,设差分后数组为d,区间查询[l,r]则转化为gcd(gcd(d[l+1,r]),a[l]);差分后区间修改变为单点修改,可用线段树暴力实现。

具体操作:将原数组进行差分,用一棵支持单点修改的线段树维护gcd,将差分数组用一个树状数组维护前缀和(用来求出变化后的a[l],也可以合并在线段树中)。
注意:差分时对区间[l,r]涉及到对r+1的操作,为防止溢出,线段树区间增大至[1,n+1]。

代码如下:

#include<bits/stdc++.h>
#define LL long long
#define lowbit(x) x&(-x)
using namespace std;
const int maxn=2e5+10;
LL node[4*maxn],a[maxn],c[maxn],d[maxn];
int n,m;LL ans;
LL gcd(LL a,LL b){return b==0?a:gcd(b,a%b);}
void pushup(int x){node[x]=abs(gcd(node[x<<1],node[x<<1|1]));}
void build(int x,int l,int r) {
    if(l==r){node[x]=d[l];return;}
    int mid=(l+r)>>1;
    build(x<<1,l,mid);build(x<<1|1,mid+1,r);
    pushup(x);
}
void change(int x,int l,int r,int pos,int d) {
    if(l==r){node[x]+=d;return;}
    int mid=(l+r)>>1;
    if(pos<=mid){change(x<<1,l,mid,pos,d);}
    else{change(x<<1|1,mid+1,r,pos,d);}
    pushup(x);
}
void query(int x,int l,int r,int sj,int tj) {
    if(sj<=l&&r<=tj){ans=abs(gcd(node[x],ans));return;}
    int mid=(l+r)>>1;
    if(sj<=mid){query(x<<1,l,mid,sj,tj);}
    if(mid+1<=tj){query(x<<1|1,mid+1,r,sj,tj);}
    pushup(x);
}
void add(int x,int d) {
    int i;
    for(i=x;i<=n;i+=lowbit(i)){c[i]+=d;}
}
LL sum(int x) {
    int i;LL ans=0;
    for(i=x;i>=1;i-=lowbit(i)){ans+=c[i];}
    return ans;
}
int main() {
    int i,j,flag,l,r,dlt;
    cin>>n>>m;
    for(i=1;i<=n;i++){scanf("%lld",&a[i]);}
    n++;
    for(i=1;i<=n;i++){d[i]=a[i]-a[i-1];add(i,d[i]);}
    build(1,1,n);
    //for(i=1;i<=3*n;i++){printf("i=%d node[i]=%d\n",i,node[i]);}
    for(i=1;i<=m;i++)
    {
        scanf("%d%d%d",&flag,&l,&r);
        if(flag==1){scanf("%d",&dlt);change(1,1,n,l,dlt);change(1,1,n,r+1,-dlt);add(l,dlt);add(r+1,-dlt);}
        else{ans=0;query(1,1,n,l+1,r);/*printf("ans=%d sum(l)=%d\n",ans,sum(l));*/printf("%lld\n",abs(gcd(ans,sum(l))));}
    }
    return 0;
}

以上是关于Luogu T9376 区间GCD的主要内容,如果未能解决你的问题,请参考以下文章

luogu P1890ybtojRMQ问题课堂过关例题2静态区间 & gcd区间

luogu2658 GCD(莫比乌斯反演/欧拉函数)

P1890 gcd区间

luogu P2568 GCD

「Luogu2257」YY的GCD

luogu2568GCD题解--欧拉函数