bzoj3601一个人的数论 莫比乌斯反演+高斯消元
Posted GXZlegend
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了bzoj3601一个人的数论 莫比乌斯反演+高斯消元相关的知识,希望对你有一定的参考价值。
题目描述
题解
莫比乌斯反演+高斯消元
(前方高能:所有题目中给出的幂次d,公式里为了防止混淆,均使用了k代替)
#include <cstdio> #include <cstring> #include <algorithm> using namespace std; typedef long long ll; const ll mod = 1000000007; ll a[110][110] , p[1010] , v[1010]; ll pow(ll x , ll y) { ll ans = 1; while(y) { if(y & 1) ans = ans * x % mod; x = x * x % mod , y >>= 1; } return ans; } int main() { int d , w , i , j , k; ll t , ans = 0; scanf("%d%d" , &d , &w); for(i = 1 ; i <= w ; i ++ ) scanf("%lld%lld" , &p[i] , &v[i]); if(w == 1 && p[1] == 1) { puts("1"); return 0; } for(i = 1 ; i <= d + 1 ; i ++ ) { a[i][0] = 1; for(j = 1 ; j <= d + 1 ; j ++ ) a[i][j] = a[i][j - 1] * i % mod; a[i][d + 2] = (a[i - 1][d + 2] + a[i][d]) % mod; } for(i = 1 ; i <= d + 1 ; i ++ ) { for(j = i ; j <= d + 1 ; j ++ ) if(a[i][j]) break; if(j > d + 1) continue; for(k = i ; k <= d + 2 ; k ++ ) swap(a[i][k] , a[j][k]); t = pow(a[i][i] , mod - 2); for(j = i ; j <= d + 2 ; j ++ ) a[i][j] = a[i][j] * t % mod; for(j = 1 ; j <= d + 1 ; j ++ ) if(j != i) for(t = a[j][i] , k = i ; k <= d + 2 ; k ++ ) a[j][k] = (a[j][k] - a[i][k] * t % mod + mod) % mod; } for(i = 1 ; i <= d + 1 ; i ++ ) { t = 1; for(j = 1 ; j <= w ; j ++ ) t = t * pow(pow(p[j] , v[j]) , i) % mod * (1 - pow(p[j] , (d - i + mod - 1) % (mod - 1)) + mod) % mod; ans = (ans + a[i][d + 2] * t) % mod; } printf("%lld\\n" , ans); return 0; }
以上是关于bzoj3601一个人的数论 莫比乌斯反演+高斯消元的主要内容,如果未能解决你的问题,请参考以下文章
bzoj 4176: Lucas的数论 -- 杜教筛,莫比乌斯反演