计算机程序的思维逻辑 (93) - 函数式数据处理 (下)
Posted 老马说编程
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了计算机程序的思维逻辑 (93) - 函数式数据处理 (下)相关的知识,希望对你有一定的参考价值。
本系列文章经补充和完善,已修订整理成书《Java编程的逻辑》,由机械工业出版社华章分社出版,于2018年1月上市热销,读者好评如潮!各大网店和书店有售,欢迎购买,京东自营链接:http://item.jd.com/12299018.html
上节初步介绍了Java 8中的函数式数据处理,对于collect方法,我们只是演示了其最基本的应用,它还有很多强大的功能,比如,可以分组统计汇总,实现类似数据库查询语言SQL中的group by功能。
具体都有哪些功能?有什么用?如何使用?基本原理是什么?本节进行详细讨论,我们先来进一步理解下collect方法。
理解collect
在上节中,过滤得到90分以上的学生列表,代码是这样的:
List<Student> above90List = students.stream() .filter(t->t.getScore()>90) .collect(Collectors.toList());
最后的collect调用看上去很神奇,它到底是怎么把Stream转换为List<Student>的呢?先看下collect方法的定义:
<R, A> R collect(Collector<? super T, A, R> collector)
它接受一个收集器collector作为参数,类型是Collector,这是一个接口,它的定义基本是:
public interface Collector<T, A, R> { Supplier<A> supplier(); BiConsumer<A, T> accumulator(); BinaryOperator<A> combiner(); Function<A, R> finisher(); Set<Characteristics> characteristics(); }
在顺序流中,collect方法与这些接口方法的交互大概是这样的:
//首先调用工厂方法supplier创建一个存放处理状态的容器container,类型为A A container = collector.supplier().get(); //然后对流中的每一个元素t,调用累加器accumulator,参数为累计状态container和当前元素t for (T t : data) collector.accumulator().accept(container, t); //最后调用finisher对累计状态container进行可能的调整,类型转换(A转换为R),并返回结果 return collector.finisher().apply(container);
combiner只在并行流中有用,用于合并部分结果。characteristics用于标示收集器的特征,Collector接口的调用者可以利用这些特征进行一些优化,Characteristics是一个枚举,有三个值:CONCURRENT, UNORDERED和IDENTITY_FINISH,它们的含义我们后面通过例子简要说明,目前可以忽略。
Collectors.toList()具体是什么呢?看下代码:
public static <T> Collector<T, ?, List<T>> toList() { return new CollectorImpl<>((Supplier<List<T>>) ArrayList::new, List::add, (left, right) -> { left.addAll(right); return left; }, CH_ID); }
它的实现类是CollectorImpl,这是Collectors内部的一个私有类,实现很简单,主要就是定义了两个构造方法,接受函数式参数并赋值给内部变量。对toList来说:
- supplier的实现是ArrayList::new,也就是创建一个ArrayList作为容器
- accumulator的实现是List::add,也就是将碰到的每一个元素加到列表中,
- 第三个参数是combiner,表示合并结果
- 第四个参数CH_ID是一个静态变量,只有一个特征IDENTITY_FINISH,表示finisher没有什么事情可以做,就是把累计状态container直接返回
也就是说,collect(Collectors.toList())背后的伪代码如下所示:
List<T> container = new ArrayList<>(); for (T t : data) container.add(t); return container;
与toList类似的容器收集器还有toSet, toCollection, toMap等,我们来看下。
容器收集器
toSet
toSet的使用与toList类似,只是它可以排重,就不举例了。toList背后的容器是ArrayList,toSet背后的容器是HashSet,其代码为:
public static <T> Collector<T, ?, Set<T>> toSet() { return new CollectorImpl<>((Supplier<Set<T>>) HashSet::new, Set::add, (left, right) -> { left.addAll(right); return left; }, CH_UNORDERED_ID); }
CH_UNORDERED_ID是一个静态变量,它的特征有两个,一个是IDENTITY_FINISH,表示返回结果即为Supplier创建的HashSet,另一个是UNORDERED,表示收集器不会保留顺序,这也容易理解,因为背后容器是HashSet。
toCollection
toCollection是一个通用的容器收集器,可以用于任何Collection接口的实现类,它接受一个工厂方法Supplier作为参数,具体代码为:
public static <T, C extends Collection<T>> Collector<T, ?, C> toCollection(Supplier<C> collectionFactory) { return new CollectorImpl<>(collectionFactory, Collection<T>::add, (r1, r2) -> { r1.addAll(r2); return r1; }, CH_ID); }
比如,如果希望排重但又希望保留出现的顺序,可以使用LinkedHashSet,Collector可以这么创建:
Collectors.toCollection(LinkedHashSet::new)
toMap
toMap将元素流转换为一个Map,我们知道,Map有键和值两部分,toMap至少需要两个函数参数,一个将元素转换为键,另一个将元素转换为值,其基本定义为:
public static <T, K, U> Collector<T, ?, Map<K,U>> toMap( Function<? super T, ? extends K> keyMapper, Function<? super T, ? extends U> valueMapper)
返回结果为Map<K,U>,keyMapper将元素转换为键,valueMapper将元素转换为值。比如,将学生流转换为学生名称和分数的Map,代码可以为:
Map<String,Double> nameScoreMap = students.stream().collect(
Collectors.toMap(Student::getName, Student::getScore));
这里,Student::getName是keyMapper,Student::getScore是valueMapper。
实践中,经常需要将一个对象列表按主键转换为一个Map,以便以后按照主键进行快速查找,比如,假定Student的主键是id,希望转换学生流为学生id和学生对象的Map,代码可以为:
Map<String, Student> byIdMap = students.stream().collect(
Collectors.toMap(Student::getId, t -> t));
t->t是valueMapper,表示值就是元素本身,这个函数用的比较多,接口Function定义了一个静态函数identity表示它,也就是说,上面的代码可以替换为:
Map<String, Student> byIdMap = students.stream().collect(
Collectors.toMap(Student::getId, Function.identity()));
上面的toMap假定元素的键不能重复,如果有重复的,会抛出异常,比如:
Map<String,Integer> strLenMap = Stream.of("abc","hello","abc").collect(
Collectors.toMap(Function.identity(), t->t.length()));
希望得到字符串与其长度的Map,但由于包含重复字符串"abc",程序会抛出异常。这种情况下,我们希望的是程序忽略后面重复出现的元素,这时,可以使用另一个toMap函数:
public static <T, K, U> Collector<T, ?, Map<K,U>> toMap( Function<? super T, ? extends K> keyMapper, Function<? super T, ? extends U> valueMapper, BinaryOperator<U> mergeFunction)
相比前面的toMap,它接受一个额外的参数mergeFunction,它用于处理冲突,在收集一个新元素时,如果新元素的键已经存在了,系统会将新元素的值与键对应的旧值一起传递给mergeFunction得到一个值,然后用这个值给键赋值。
对于前面字符串长度的例子,新值与旧值其实是一样的,我们可以用任意一个值,代码可以为:
Map<String,Integer> strLenMap = Stream.of("abc","hello","abc").collect(
Collectors.toMap(Function.identity(),
t->t.length(), (oldValue,value)->value));
有时,我们可能希望合并新值与旧值,比如一个联系人列表,对于相同的联系人,我们希望合并电话号码,mergeFunction可以定义为:
BinaryOperator<String> mergeFunction = (oldPhone,phone)->oldPhone+","+phone;
toMap还有一个更为通用的形式:
public static <T, K, U, M extends Map<K, U>> Collector<T, ?, M> toMap( Function<? super T, ? extends K> keyMapper, Function<? super T, ? extends U> valueMapper, BinaryOperator<U> mergeFunction, Supplier<M> mapSupplier)
相比前面的toMap,多了一个mapSupplier,它是Map的工厂方法,对于前面两个toMap,其mapSupplier其实是HashMap::new。我们知道,HashMap是没有任何顺序的,如果希望保持元素出现的顺序,可以替换为LinkedHashMap,如果希望收集的结果排序,可以使用TreeMap。
toMap主要用于顺序流,对于并发流,Collectors有专门的名称为toConcurrentMap的收集器,它内部使用ConcurrentHashMap,用法类似,具体我们就不讨论了。
字符串收集器
除了将元素流收集到容器中,另一个常见的操作是收集为一个字符串。比如,获取所有的学生名称,用逗号连接起来,传统上,代码看上去像这样:
StringBuilder sb = new StringBuilder(); for(Student t : students){ if(sb.length()>0){ sb.append(","); } sb.append(t.getName()); } return sb.toString();
针对这种常见的需求,Collectors提供了joining收集器:
public static Collector<CharSequence, ?, String> joining() public static Collector<CharSequence, ?, String> joining(CharSequence delimiter) public static Collector<CharSequence, ?, String> joining( CharSequence delimiter, CharSequence prefix, CharSequence suffix)
第一个就是简单的把元素连接起来,第二个支持一个分隔符,第三个更为通用,可以给整个结果字符串加个前缀和后缀。比如:
String result = Stream.of("abc","老马","hello") .collect(Collectors.joining(",", "[", "]")); System.out.println(result);
输出为:
[abc,老马,hello]
joining的内部也利用了StringBuilder,比如,第一个joining函数的代码为:
public static Collector<CharSequence, ?, String> joining() { return new CollectorImpl<CharSequence, StringBuilder, String>( StringBuilder::new, StringBuilder::append, (r1, r2) -> { r1.append(r2); return r1; }, StringBuilder::toString, CH_NOID); }
supplier是StringBuilder::new,accumulator是StringBuilder::append,finisher是StringBuilder::toString,CH_NOID表示特征集为空。
分组
分组类似于数据库查询语言SQL中的group by语句,它将元素流中的每个元素分到一个组,可以针对分组再进行处理和收集,分组的功能比较强大,我们逐步来说明。
为便于举例,我们先修改下学生类Student,增加一个字段grade,表示年级,改下构造方法:
public Student(String name, String grade, double score) { this.name = name; this.grade = grade; this.score = score; }
示例学生列表students改为:
static List<Student> students = Arrays.asList(new Student[] { new Student("zhangsan", "1", 91d), new Student("lisi", "2", 89d), new Student("wangwu", "1", 50d), new Student("zhaoliu", "2", 78d), new Student("sunqi", "1", 59d)});
基本用法
最基本的分组收集器为:
public static <T, K> Collector<T, ?, Map<K, List<T>>> groupingBy(Function<? super T, ? extends K> classifier)
参数是一个类型为Function的分组器classifier,它将类型为T的元素转换为类型为K的一个值,这个值表示分组值,所有分组值一样的元素会被归为同一个组,放到一个列表中,所以返回值类型是Map<K, List<T>>。 比如,将学生流按照年级进行分组,代码为:
Map<String, List<Student>> groups = students.stream()
.collect(Collectors.groupingBy(Student::getGrade));
学生会分为两组,第一组键为"1",分组学生包括"zhangsan", "wangwu"和"sunqi",第二组键为"2",分组学生包括"lisi", "zhaoliu"。
这段代码基本等同于如下代码:
Map<String, List<Student>> groups = new HashMap<>(); for (Student t : students) { String key = t.getGrade(); List<Student> container = groups.get(key); if (container == null) { container = new ArrayList<>(); groups.put(key, container); } container.add(t); } System.out.println(groups);
显然,使用groupingBy要简洁清晰的多,但它到底是怎么实现的呢?
基本原理
groupingBy的代码为:
public static <T, K> Collector<T, ?, Map<K, List<T>>> groupingBy(Function<? super T, ? extends K> classifier) { return groupingBy(classifier, toList()); }
它调用了第二个groupingBy方法,传递了toList收集器,其代码为:
public static <T, K, A, D> Collector<T, ?, Map<K, D>> groupingBy(Function<? super T, ? extends K> classifier, Collector<? super T, A, D> downstream) { return groupingBy(classifier, HashMap::new, downstream); }
这个方法接受一个下游收集器downstream作为参数,然后传递给下面更通用的函数:
public static <T, K, D, A, M extends Map<K, D>> Collector<T, ?, M> groupingBy(Function<? super T, ? extends K> classifier, Supplier<M> mapFactory, Collector<? super T, A, D> downstream)
classifier还是分组器,mapFactory是返回Map的工厂方法,默认是HashMap::new,downstream表示下游收集器,下游收集器负责收集同一个分组内元素的结果。
对最通用的groupingBy函数返回的收集器,其收集元素的基本过程和伪代码为:
//先创建一个存放结果的Map Map map = mapFactory.get(); for (T t : data) { // 对每一个元素,先分组 K key = classifier.apply(t); // 找存放分组结果的容器,如果没有,让下游收集器创建,并放到Map中 A container = map.get(key); if (container == null) { container = downstream.supplier().get(); map.put(key, container); } // 将元素交给下游收集器(即分组收集器)收集 downstream.accumulator().accept(container, t); } // 调用分组收集器的finisher方法,转换结果 for (Map.Entry entry : map.entrySet()) { entry.setValue(downstream.finisher().apply(entry.getValue())); } return map;
在最基本的groupingBy函数中,下游收集器是toList,但下游收集器还可以是其他收集器,甚至是groupingBy,以构成多级分组,下面我们来看更多的示例。
分组计数、找最大/最小元素
将元素按一定标准分为多组,然后计算每组的个数,按一定标准找最大或最小元素,这是一个常见的需求,Collectors提供了一些对应的收集器,一般用作下游收集器,比如:
//计数 public static <T> Collector<T, ?, Long> counting() //计算最大值 public static <T> Collector<T, ?, Optional<T>> maxBy(Comparator<? super T> comparator) //计算最小值 public static <T> Collector<T, ?, Optional<T>> minBy(Comparator<? super T> comparator)
还有更为通用的名为reducing的归约收集器,我们就不介绍了,下面,看一些例子。
为了便于使用Collectors中的方法,我们将其中的方法静态导入,即加入如下代码:
import static java.util.stream.Collectors.*;
统计每个年级的学生个数,代码可以为:
Map<String, Long> gradeCountMap = students.stream().collect(
groupingBy(Student::getGrade, counting()));
统计一个单词流中每个单词的个数,按出现顺序排序,代码示例为:
Map<String, Long> wordCountMap = Stream.of("hello","world","abc","hello").collect( groupingBy(Function.identity(), LinkedHashMap::new, counting()));
获取每个年级分数最高的一个学生,代码可以为:
Map<String, Optional<Student>> topStudentMap = students.stream().collect(
groupingBy(Student::getGrade,
maxBy(Comparator.comparing(Student::getScore))));
需要说明的是,这个分组收集结果是Optional<Student>,而不是Student,这是因为maxBy处理的流可能是空流,但对我们的例子,这是不可能的,为了直接得到Student,可以使用Collectors的另一个收集器collectingAndThen,在得到Optional<Student>后调用Optional的get方法,如下所示:
Map<String, Student> topStudentMap = students.stream().collect(
groupingBy(Student::getGrade,
collectingAndThen(
maxBy(Comparator.comparing(Student::getScore)),
Optional::get)));
关于collectingAndThen,我们待会再进一步讨论。
分组数值统计
除了基本的分组计数,还经常需要进行一些分组数值统计,比如求学生分数的和、平均分、最高分/最低分等,针对int,long和double类型,Collectors提供了专门的收集器,比如:
//求平均值,int和long也有类似方法 public static <T> Collector<T, ?, Double> averagingDouble(ToDoubleFunction<? super T> mapper) //求和,long和double也有类似方法 public static <T> Collector<T, ?, Integer> summingInt(ToIntFunction<? super T> mapper) //求多种汇总信息,int和double也有类似方法 //LongSummaryStatistics包括个数、最大值、最小值、和、平均值等多种信息 public static <T> Collector<T, ?, LongSummaryStatistics> summarizingLong(ToLongFunction<? super T> mapper)
比如,按年级统计学生分数信息,代码可以为:
Map<String, DoubleSummaryStatistics> gradeScoreStat =
students.stream().collect(
groupingBy(Student::getGrade,
summarizingDouble(Student::getScore)));
分组内的map
对于每个分组内的元素,我们感兴趣的可能不是元素本身,而是它的某部分信息,在上节介绍的Stream API中,Stream有map方法,可以将元素进行转换,Collectors也为分组元素提供了函数mapping,如下所示:
public static <T, U, A, R> Collector<T, ?, R> mapping(Function<? super T, ? extends U> mapper, Collector<? super U, A, R> downstream)
交给下游收集器downstream的不再是元素本身,而是应用转换函数mapper之后的结果。比如,对学生按年级分组,得到学生名称列表,代码可以为:
Map<String, List<String>> gradeNameMap =
students.stream().collect(
groupingBy(Student::getGrade,
mapping(Student::getName, toList())));
System.out.println(gradeNameMap);
输出为:
{1=[zhangsan, wangwu, sunqi], 2=[lisi, zhaoliu]}
分组结果处理(filter/sort/skip/limit)
对分组后的元素,我们可以计数,找最大/最小元素,计算一些数值特征,还可以转换后(map)再收集,那可不可以像上节介绍的Stream API一样,进行排序(sort)、过滤(filter)、限制返回元素(skip/limit)呢?Collector没有专门的收集器,但有一个通用的方法:
public static<T,A,R,RR> Collector<T,A,RR> collectingAndThen( Collector<T,A,R> downstream, Function<R,RR> finisher)
这个方法接受一个下游收集器downstream和一个finisher,返回一个收集器,它的主要代码为:
return new CollectorImpl<>(downstream.supplier(), downstream.accumulator(), downstream.combiner(), downstream.finisher().andThen(finisher), characteristics);
也就是说,它在下游收集器的结果上又调用了finisher。利用这个finisher,我们可以实现多种功能,下面看一些例子。
收集完再排序,可以定义如下方法:
public static <T> Collector<T, ?, List<T>> collectingAndSort( Collector<T, ?, List<T>> downstream, Comparator<? super T> comparator) { return Collectors.collectingAndThen(downstream, (r) -> { r.sort(comparator); return r; }); }
比如,将学生按年级分组,分组内学生按照分数由高到低进行排序,利用这个方法,代码可以为:
Map<String, List<Student>> gradeStudentMap =
students.stream().collect(
groupingBy(Student::getGrade,
collectingAndSort(toList(),
Comparator.comparing(Student::getScore).reversed())));
针对这个需求,也可以先对流进行排序,然后再分组。
收集完再过滤,可以定义如下方法:
public static <T> Collector<T, ?, List<T>> collectingAndFilter( Collector<T, ?, List<T>> downstream, Predicate<T> predicate) { return Collectors.collectingAndThen(downstream, (r) -> { return r.stream().filter(predicate).collect(Collectors.toList()); }); }
比如,将学生按年级分组,分组后,每个分组只保留不及格的学生(低于60分),利用这个方法,代码可以为:
Map<String, List<Student>> gradeStudentMap =
students.stream().collect(
groupingBy(Student::getGrade,
collectingAndFilter(toList(), t->t.getScore()<60)));
针对这个需求,也可以先对流进行过滤,然后再分组。
收集完,只返回特定区间的结果,可以定义如下方法:
public static <T> Collector<T, ?, List<T>> collectingAndSkipLimit( Collector<T, ?, List<T>> downstream, long skip, long limit) { return Collectors.collectingAndThen(downstream, (r) -> { return r.stream().skip(skip).limit(limit).collect(Collectors.toList()); }); }
比如,将学生按年级分组,分组后,每个分组只保留前两名的学生,代码可以为:
Map<String, List<Student>> gradeStudentMap =
students.stream()
.sorted(Comparator.comparing(Student::getScore).reversed())
.collect(groupingBy(Student::getGrade,
collectingAndSkipLimit(toList(), 0, 2)));
这次,我们先对学生流进行了排序,然后再进行了分组。
分区
分组的一个特殊情况是分区,就是将流按true/false分为两个组,Collectors有专门的分区函数:
public static <T> Collector<T, ?, Map<Boolean, List<T>>> partitioningBy(Predicate<? super T> predicate) public static <T, D, A> Collector<T, ?, Map<Boolean, D>> partitioningBy(Predicate<? super T> predicate, Collector<? super T, A, D> downstream)
第一个的下游收集器为toList(),第二个可以指定一个下游收集器。
比如,将学生按照是否及格(大于等于60分)分为两组,代码可以为:
Map<Boolean, List<Student>> byPass = students.stream().collect(
partitioningBy(t->t.getScore()>=60));
按是否及格分组后,计算每个分组的平均分,代码可以为:
Map<Boolean, Double> avgScoreMap = students.stream().collect( partitioningBy(t->t.getScore()>=60, averagingDouble(Student::getScore)));
多级分组
groupingBy和partitioningBy都可以接受一个下游收集器,而下游收集器又可以是分组或分区。
比如,按年级对学生分组,分组后,再按照是否及格对学生进行分区,代码可以为:
Map<String, Map<Boolean, List<Student>>> multiGroup =
students.stream().collect(
groupingBy(Student::getGrade,
partitioningBy(t->t.getScore()>=60)));
小结
本节主要讨论了各种收集器,包括容器收集器、字符串收集器、分组和分区收集器等。
对于分组和分区,它们接受一个下游收集器,对同一个分组或分区内的元素进行进一步收集,下游收集器还可以是分组或分区,以构建多级分组,有一些收集器主要用于分组,比如counting, maxBy, minBy, summarizingDouble等。
mapping和collectingAndThen也都接受一个下游收集器,mapping在把元素交给下游收集器之前先进行转换,而collectingAndThen对下游收集器的结果进行转换,组合利用它们,可以构造更为灵活强大的收集器。
至此,关于Java 8中的函数式数据处理Stream API,我们就介绍完了,Stream API提供了集合数据处理的常用函数,利用它们,可以简洁地实现大部分常见需求,大大减少代码,提高可读性。
对于并发编程,Java 8也提供了一个新的类CompletableFuture,类似于Stream API对集合数据的流水线式操作,使用CompletableFuture,可以实现对多个异步任务进行流水线式操作,它具体是什么呢?
(与其他章节一样,本节所有代码位于 https://github.com/swiftma/program-logic,位于包shuo.laoma.java8.c93下)
----------------
未完待续,查看最新文章,敬请关注微信公众号“老马说编程”(扫描下方二维码),从入门到高级,深入浅出,老马和你一起探索Java编程及计算机技术的本质。用心原创,保留所有版权。
以上是关于计算机程序的思维逻辑 (93) - 函数式数据处理 (下)的主要内容,如果未能解决你的问题,请参考以下文章