利用sklearn的LabelEncoder对标签进行数字化编码

Posted 焦距

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了利用sklearn的LabelEncoder对标签进行数字化编码相关的知识,希望对你有一定的参考价值。

 

from sklearn.preprocessing import LabelEncoder

def gen_label_encoder():
    labels = [BB, CC]  
    le = LabelEncoder()
    le.fit(labels)
    print le.classes_, le.classes_
    for label in le.classes_:
        print label, le.transform([label])[0]
    joblib.dump(le, data/label_encoder.h5)

 

LabelEncoder的说明:

 1 class LabelEncoder(BaseEstimator, TransformerMixin):
 2     """Encode labels with value between 0 and n_classes-1.
 3 
 4     Read more in the :ref:`User Guide <preprocessing_targets>`.
 5 
 6     Attributes
 7     ----------
 8     classes_ : array of shape (n_class,)
 9         Holds the label for each class.
10 
11     Examples
12     --------
13     `LabelEncoder` can be used to normalize labels.
14 
15     >>> from sklearn import preprocessing
16     >>> le = preprocessing.LabelEncoder()
17     >>> le.fit([1, 2, 2, 6])
18     LabelEncoder()
19     >>> le.classes_
20     array([1, 2, 6])
21     >>> le.transform([1, 1, 2, 6]) #doctest: +ELLIPSIS
22     array([0, 0, 1, 2]...)
23     >>> le.inverse_transform([0, 0, 1, 2])
24     array([1, 1, 2, 6])
25 
26     It can also be used to transform non-numerical labels (as long as they are
27     hashable and comparable) to numerical labels.
28 
29     >>> le = preprocessing.LabelEncoder()
30     >>> le.fit(["paris", "paris", "tokyo", "amsterdam"])
31     LabelEncoder()
32     >>> list(le.classes_)
33     [‘amsterdam‘, ‘paris‘, ‘tokyo‘]
34     >>> le.transform(["tokyo", "tokyo", "paris"]) #doctest: +ELLIPSIS
35     array([2, 2, 1]...)
36     >>> list(le.inverse_transform([2, 2, 1]))
37     [‘tokyo‘, ‘tokyo‘, ‘paris‘]
38 
39     See also
40     --------
41     sklearn.preprocessing.OneHotEncoder : encode categorical integer features
42         using a one-hot aka one-of-K scheme.
43     """

 

以上是关于利用sklearn的LabelEncoder对标签进行数字化编码的主要内容,如果未能解决你的问题,请参考以下文章

如何在使用 sklearns 的 LabelEncoder() 时检查分配给哪个标签的值?

11.sklearn.preprocessing.LabelEncoder的作用

sklearn.preprocessing.LabelEncoder_标准化标签,将标签值统一转换成range(标签值个数-1)范围内

独热编码(One-Hot Encoding)和 LabelEncoder标签编码 区别 数据预处理:(机器学习) sklearn

Sklearn LabelEncoder 在排序中抛出 TypeError

LabelEncoder 与 sklearn ,变换和值之间的反向单一关系?