POJ2186(强连通分量分解)

Posted Penn000

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了POJ2186(强连通分量分解)相关的知识,希望对你有一定的参考价值。

Popular Cows

Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 35035   Accepted: 14278

Description

Every cow‘s dream is to become the most popular cow in the herd. In a herd of N (1 <= N <= 10,000) cows, you are given up to M (1 <= M <= 50,000) ordered pairs of the form (A, B) that tell you that cow A thinks that cow B is popular. Since popularity is transitive, if A thinks B is popular and B thinks C is popular, then A will also think that C is 
popular, even if this is not explicitly specified by an ordered pair in the input. Your task is to compute the number of cows that are considered popular by every other cow. 

Input

* Line 1: Two space-separated integers, N and M 

* Lines 2..1+M: Two space-separated numbers A and B, meaning that A thinks B is popular. 

Output

* Line 1: A single integer that is the number of cows who are considered popular by every other cow. 

Sample Input

3 3
1 2
2 1
2 3

Sample Output

1

Hint

Cow 3 is the only cow of high popularity. 

Source

 
题意:求从其他所有顶点都可以到达的顶点数目。
思路:所求顶点数目即为拓扑序最后的强连通分量中的顶点数目,检查其他点是否都可以到达该强连通分量。
  1 //2017-08-20
  2 #include <cstdio>
  3 #include <cstring>
  4 #include <iostream>
  5 #include <algorithm>
  6 #include <vector>
  7 
  8 using namespace std;
  9 
 10 const int N = 10010;
 11 vector<int> G[N];//邻接表存图
 12 vector<int> rG[N];//存反向图
 13 vector<int> vs;//后序遍历顺序的顶点列表
 14 bool vis[N];
 15 int cmp[N];//所属强连通分量的拓扑序
 16 
 17 void add_edge(int u, int v){
 18     G[u].push_back(v);
 19     rG[v].push_back(u);
 20 }
 21 
 22 //input: u 顶点
 23 //output: vs 后序遍历顺序的顶点列表
 24 void dfs(int u){
 25     vis[u] = true;
 26     for(int i = 0; i < G[u].size(); i++){
 27         int v = G[u][i];
 28         if(!vis[v])
 29               dfs(v);
 30     }
 31     vs.push_back(u);
 32 }
 33 
 34 //input: u 顶点编号; k 拓扑序号
 35 //output: cmp[] 强连通分量拓扑序
 36 void rdfs(int u, int k){
 37     vis[u] = true;
 38     cmp[u] = k;
 39     for(int i = 0; i < rG[u].size(); i++){
 40         int v = rG[u][i];
 41         if(!vis[v])
 42               rdfs(v, k);
 43     }
 44 }
 45 
 46 //Strongly Connected Component 强连通分量
 47 //input: n 顶点个数
 48 //output: k 强连通分量数;
 49 int scc(int n){
 50     memset(vis, 0, sizeof(vis));
 51     vs.clear();
 52     for(int u = 0; u < n; u++)
 53         if(!vis[u])
 54               dfs(u);
 55     int k = 0;
 56     memset(vis, 0, sizeof(vis));
 57     for(int i = vs.size()-1; i >= 0; i--)
 58           if(!vis[vs[i]])
 59               rdfs(vs[i], k++);
 60     return k;
 61 }
 62 
 63 void solve(int n){
 64     int k = scc(n);
 65     int u = 0, ans = 0;
 66     for(int v = 0; v < n; v++){
 67         if(cmp[v] == k-1){
 68             u = v;
 69             ans++;
 70         }
 71     }
 72     memset(vis, 0, sizeof(vis));
 73     rdfs(u, 0);
 74     for(int i = 0; i < n; i++){
 75         if(!vis[i]){
 76             ans = 0;
 77             break;
 78         }
 79     }
 80     printf("%d\n", ans);
 81 }
 82 
 83 int main()
 84 {
 85     int n, m;
 86     while(scanf("%d%d", &n, &m)!=EOF){
 87         int u, v;
 88         for(int i = 0; i < n; i++){
 89             G[i].clear();
 90             rG[i].clear();
 91         }
 92         while(m--){
 93             scanf("%d%d", &u, &v);
 94             u--; v--;
 95             add_edge(u, v);
 96         }
 97         solve(n);
 98     }
 99 
100     return 0;
101 }

 

以上是关于POJ2186(强连通分量分解)的主要内容,如果未能解决你的问题,请参考以下文章

[POJ2186]Popular Cows(强连通分量)

poj2186 Popular Cows

poj2186 强连通分量 targan算法的应用

POJ 2186:Popular Cows(强连通分量)

poj 2186 tarjan求强连通分量

POJ 2186 Popular Cows 强连通分量模板