HDU-2604 Queuing(矩阵快速幂)

Posted GoesOn

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了HDU-2604 Queuing(矩阵快速幂)相关的知识,希望对你有一定的参考价值。

Queuing

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 6076    Accepted Submission(s): 2643


Problem Description
Queues and Priority Queues are data structures which are known to most computer scientists. The Queue occurs often in our daily life. There are many people lined up at the lunch time. 
技术分享

  Now we define that ‘f’ is short for female and ‘m’ is short for male. If the queue’s length is L, then there are 2L numbers of queues. For example, if L = 2, then they are ff, mm, fm, mf . If there exists a subqueue as fmf or fff, we call it O-queue else it is a E-queue.
Your task is to calculate the number of E-queues mod M with length L by writing a program.
 

 

Input
Input a length L (0 <= L <= 10 6) and M.
 

 

Output
Output K mod M(1 <= M <= 30) where K is the number of E-queues with length L.
 

 

Sample Input
3 8 4 7 4 8
 

 

Sample Output
6 2 1
 

 

Author
WhereIsHeroFrom
 

 

Source
 

 

Recommend
lcy

 题目大意:给定长度L,由m、f组成的队列,如果是fmf、fff则是E队列,问长为L的队列中最多有多少E队列(mod K)

解题思路:前几个例子不难发现F5 = F1+F3+F4。所以可以得出如下关系:

1  0  1  1        F1            F5

1  0  0  0        F2            F1

                 *              =     

0  1  0  0        F3            F2

0  0  1  0        F4       F3

所以就是计算初始矩阵a的l次幂最后mod k即可

 

代码:

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int n,mod;
struct matrix
{
    long long m[4][4];
    matrix operator*(const matrix& a)const
    {
        matrix temp;
        for(int i=0;i<4;i++)
        {
            for(int j=0;j<4;j++)
            {
                temp.m[i][j] = 0;
                for(int k=0;k<4;k++)
                {
                    temp.m[i][j] += m[i][k]*a.m[k][j]%mod;
                    temp.m[i][j] %= mod;
                }
            }
        }
        return temp;
    }
};

int ks(matrix &a)
{
    if(n<=3)
        return (2*n)%mod;
    if(n==4)
        return 9%mod;
    n -= 4;
    matrix ans;
    memset(ans.m,0,sizeof(ans));
    for(int i=0;i<4;i++)
    {
        ans.m[i][i] = 1;
    }
    while(n)
    {
        if(n%2)
            ans = ans*a;
        a = a*a;
        n /= 2;
    }

    int sum=0;
    sum+=ans.m[0][0]*9%mod;
    sum+=ans.m[0][1]*6%mod;
    sum+=ans.m[0][2]*4%mod;
    sum+=ans.m[0][3]*2%mod;
    sum %= mod;
    return sum;
}
int main()
{
    matrix a;
    while(scanf("%d %d",&n,&mod)!=EOF)
    {
        memset(a.m,0,sizeof(a.m));
        a.m[0][0] = a.m[0][2] = a.m[0][3] = 1;
        a.m[1][0] = a.m[2][1] = a.m[3][2] = 1;
        printf("%d\n",ks(a));
    }
}

 








以上是关于HDU-2604 Queuing(矩阵快速幂)的主要内容,如果未能解决你的问题,请参考以下文章

hdu 2604 Queuing(推推推公式+矩阵快速幂)

HDU - 2604 Queuing(矩阵快速幂或直接递推)

hdu-2604 Queuing---递推+矩阵快速幂

hdu 2604 Queuing dp找规律 然后矩阵快速幂。坑!!

HDU 2604 Queuing,矩阵高速幂

hdu 2604 递推 矩阵快速幂